Review of vector analysis

Vectors

In Cartesian coordinate system a vector can be decomposed into its components along the x, y, and z axes.
$\vec{a}=a_{x} \hat{e}_{x}+a_{y} \hat{e}_{y}+a_{z} \hat{e}_{z}$
$\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ are unit vectors along the x, y, and z axes.
They are perpendicular to each other.

$$
\begin{gathered}
\vec{a}=a_{x} \hat{e}_{x}+a_{y} \hat{e}_{y}+a_{z} \hat{e}_{z} \\
\vec{b}=b_{x} \hat{e}_{x}+b_{y} \hat{e}_{y}+b_{z} \hat{e}_{z} \\
\vec{a}+\vec{b}=\left(a_{x}+b_{x}\right) \hat{e}_{x}+\left(a_{y}+b_{y}\right) \hat{e}_{y}+\left(a_{z}+b_{z}\right) \hat{e}_{z}
\end{gathered}
$$

Scalar product (Dot product) between two vectors

$$
\begin{aligned}
\vec{a} & =a_{x} \hat{e}_{x}+a_{y} \hat{e}_{y}+a_{z} \hat{e}_{z} \\
\vec{b} & =b_{x} \hat{e}_{x}+b_{y} \hat{e}_{y}+b_{z} \hat{e}_{z}
\end{aligned}
$$

Geometrical meaning:

$$
\vec{a} \cdot \vec{b}=a b \cos \theta \quad a=\vec{a}=\text { magnitude of } \vec{a}
$$

$\vec{a} \cdot \vec{b}=0$ if \vec{a} and \vec{b} are perpendicular to each other
$b \cos \theta$

$$
\left(\theta=\frac{\pi}{2} \rightarrow \cos \theta=0\right)
$$

In Cartesian coordinate:

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

$$
\text { because } \hat{e}_{x} \cdot \hat{e}_{y}=\hat{e}_{x} \cdot \hat{e}_{z}=\hat{e}_{y} \cdot \hat{e}_{z}=0
$$

Cross product (Vector product) between two vectors

$$
\vec{a} \times \vec{b}=\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \vec{e}_{x}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \vec{e}_{y}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \vec{e}_{z}
$$

$\begin{aligned} & \text { Geometrical } \\ & \text { meaning: }\end{aligned} \vec{a} \times \vec{b} \uparrow$
A cross product is a vector perpendicular to the plane formed by \vec{a} and \vec{b}

$$
\vec{a} \times \vec{b}=a b \sin \theta=\text { area of parallelogram }
$$

$\vec{a} \times \vec{b}=0$ if \vec{a} and \vec{b} are parallel to each other

$$
(\theta=0 \rightarrow \sin \theta=0)
$$

Note that: $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$

Rule 1: $\quad(\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c}) \quad$ The cross (x) and the dot (.) can be interchanged

$$
\left.\begin{array}{l}
(\vec{a} \times \vec{b}) \cdot \vec{c} \\
(\vec{b} \times \vec{c}) \cdot \vec{a} \\
(\vec{c} \times \vec{a}) \cdot \vec{b}
\end{array}\right\}=\text { volume of parallelepiped }
$$

This rule is not difficult to remember.
The key point is to keep the cyclic order: abc, bca, cab, whereas acb, bac, cba, will introduce a minus sign.

Note that $\vec{a} \times \vec{b} \cdot \vec{c}$ has no meaning or ambiguous.

Rule 2: $\quad(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$

Note that: $\vec{a} \times \vec{b} \times \vec{c}$ has no meaning or ambiguous because

The vector in the middle (b) has a positive coefficient

$$
(\vec{a} \times \vec{b}) \times \vec{c} \text { must lie on plane } a b
$$

on plane ab on plane bc

Geometric interpretation:

$\vec{a} \times \vec{b}$ must be perpendicular to plane $a b$ formed by \vec{a} and \vec{b}.
\vec{c} can be decomposed as $\vec{c}=\vec{c}_{\perp}+\vec{c}_{=}$
perpendicular on plane $a b$ to plane $a b$

$$
(\vec{a} \times \vec{b}) \times \vec{c}=\underbrace{(\vec{a} \times \vec{b}) \times \vec{c}_{\perp}}_{0}+\underbrace{(\vec{a} \times \vec{b}) \times \vec{c}_{=}}_{\text {on plane } a b}
$$

Scalar and vector fields

A scalar field is a function of position in space. It is a scalar or a number.
For example, a temperature field $T(x, y, z)$ tells us the temperature at point (x, y, z) in space.

A vector field is also a function of position in space but it is a vector, i.e., it has a magnitude and direction. For example, a wind velocity field on a weather chart: $\overrightarrow{\mathcal{v}}(x, y, z)$

Note that both scalar and vector fields may depend on additional variables such as time:

$$
\overrightarrow{\mathcal{V}}(\vec{r}, t)
$$

Nabla operator (gradient operator)

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

It has three components and behaves as a vector.

Nabla operator on a scalar field: $\phi(\vec{r})$

$$
\nabla \phi(\vec{r})=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=\frac{\partial \phi}{\partial x} \vec{e}_{x}+\frac{\partial \phi}{\partial y} \vec{e}_{y}+\frac{\partial \phi}{\partial z} \vec{e}_{z}
$$

Gradient of a scalar field is a vector.

It describes the rate of change of the scalar field along the x, y, and z directions. It provides information about the rate of change of the scalar field in any direction.

The rate of change in an arbitrary direction \hat{n} is given by

$$
\hat{n} \cdot \nabla \phi(\vec{r})=\frac{\partial \phi}{\partial x}\left(\hat{n} \cdot \vec{e}_{x}\right)+\frac{\partial \phi}{\partial y}\left(\hat{n} \cdot \vec{e}_{y}\right)+\frac{\partial \phi}{\partial z}\left(\hat{n} \cdot \vec{e}_{z}\right)
$$

$$
\nabla \cdot \vec{v}(\vec{r})=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
$$

Divergence is a scalar (number), not a vector.
The "dot" is very important.
$\nabla \overrightarrow{\mathcal{V}}$ has no meaning.

Physical meaning: the net flux (field lines) going out of a small volume $d V$.

$$
(\nabla \cdot \vec{v}(\vec{r})) d V=\text { net flux }
$$

Net flux is zero if there is no source inside the small volume (incoming flux = outgoing flux)

Net flux is finite is there is a source inside the small volume.

(For example:
water flow in a river through a volume of size $d V=d x d y d z$)

$$
\begin{aligned}
& \text { surface area passed through } \\
& \text { net flux }=[\vec{v}(x+d x)-\vec{v}(x)] d y d z .) \text { by the filled lines } \\
& =\underbrace{v_{x}(x+d x)-v_{x}(x)}_{\partial v_{x}} \underbrace{d x d y d z}_{d V} \\
& \partial x
\end{aligned}
$$

$$
\text { net flux }=\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}\right) d V=\nabla \cdot \vec{v}(\vec{r}) d V
$$

$$
\nabla \times \vec{F}=\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
\partial & \partial & \partial \\
\partial x & \partial y & \partial z \\
F_{x} & F_{y} & F_{z}
\end{array}=\left(\begin{array}{cc}
\partial F_{z} & \partial F_{y} \\
\partial y & \partial z
\end{array}\right) \vec{e}_{x}+\binom{\partial F_{x}-\frac{\partial F_{z}}{\partial z}}{\partial x} \vec{e}_{y}+\left(\begin{array}{cc}
\partial F_{y} & \partial F_{x} \\
\partial x & \partial y
\end{array}\right) \vec{e}_{z}
$$

The "work" done by the field around a small loop is equal to the rotation multiplied by the area of the loop.

Work done by the field around a loop of area dA:

perpendicular to the loop plane

Consider the work done by a vector field \boldsymbol{F} around a small loop on the $x-y$ plane:

For an arbitrary loop of area $d A$, the work done along the loop by the field is given by $(\nabla \times \vec{F}) \cdot d \vec{A}$

$$
(\nabla \cdot \nabla) \phi(\vec{r})=\nabla^{2} \phi(\vec{r})=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}
$$

This is a scalar or a number

Nabla operating on several quantities

How to calculate $\nabla \cdot(\phi \vec{v})=$?
Use chain rule:

$$
\begin{aligned}
\frac{d}{d x}(f g) & =\frac{d f}{d x} g+f \frac{d g}{d x} \\
& =\left[\left(\frac{d}{d x}\right)_{f}+\left(\frac{d}{d x}\right)_{g}\right](f g)
\end{aligned}
$$

split the derivative into two parts: one acting on f only and another on g only

Let us apply the chain rule to $\nabla \cdot(\phi \vec{v})$

$$
\begin{aligned}
\nabla \cdot(\phi \vec{v}) & =\left(\nabla_{\phi}+\nabla_{v}\right) \cdot(\phi \vec{v}) \\
& =\nabla_{\phi} \cdot(\phi \vec{v})+\nabla_{v} \cdot(\phi \vec{v}) \\
& =\left(\nabla_{\phi} \phi\right) \cdot \vec{v}+\phi\left(\nabla_{v} \cdot \vec{v}\right) \\
& =(\nabla \phi) \cdot \vec{v}+\phi(\nabla \cdot \vec{v})
\end{aligned}
$$

Split the derivative (nabla)

Nabla on ϕ must be a vector and nabla on \underline{v} must be divergence

Drop the subscripts ϕ and v

Another example: $\quad \nabla \times(\vec{a} \times \vec{b})=\left(\nabla_{a}+\nabla_{b}\right) \times(\vec{a} \times \vec{b})$

$$
=\nabla_{a} \times(\vec{a} \times \vec{b})+\nabla_{b} \times(\vec{a} \times \vec{b})
$$

Consider each term:

$$
\nabla_{a} \times(\vec{a} \times \vec{b})=\alpha \vec{a}-\beta \vec{b}
$$

Use rule 2: treat nabla as a vector.
Recall that a triple cross product produces a vector on a plane formed by the vectors in the bracket and the vector in the middle (a) has a positive sign.

The coefficients α and β must be scalars:

$$
\alpha=\left\{\begin{array}{l}
\nabla_{a} \cdot \vec{b} \\
\vec{b} \cdot \nabla_{a}
\end{array} \quad \rightarrow \text { makes no sense } \quad \beta= \begin{cases}\nabla_{a} \cdot \vec{a} \\
\vec{a} \cdot \nabla_{a} & \rightarrow \text { makes no sense because the } \\
& \text { nabla should act on } \boldsymbol{a}, \text { not on } \boldsymbol{b}\end{cases}\right.
$$

$$
\left.\begin{array}{l}
\nabla_{a} \times(\vec{a} \times \vec{b})=\left(\vec{b} \cdot \nabla_{a}\right) \vec{a}-\left(\nabla_{a} \cdot \vec{a}\right) \vec{b} \\
\nabla_{b} \times(\vec{a} \times \vec{b})=\left(\nabla_{b} \cdot \vec{b}\right) \vec{a}-\left(\vec{a} \cdot \nabla_{b}\right) \vec{b}
\end{array}\right] \quad \nabla \times(\vec{a} \times \vec{b})=(\vec{b} \cdot \nabla+\nabla \cdot \vec{b}) \vec{a}-(\nabla \cdot \vec{a}+\vec{a} \cdot \nabla) \vec{b}
$$

Integrals

1) Line integral
2) Surface integral
3) Volume integral

Integrals are scalars or numbers.

- The "dot" is very important. Without the dot, the expression makes no sense.
- A line integral must be defined with respect to a given curve and the direction is important:

$$
I_{A \rightarrow B}=-I_{B \rightarrow A}
$$

- If $F(r)$ is a force field, the line integral can be thought of as the work done by the field from point A to point B.

Meaning of line integral

As N is increased, the sum approaches the exact integral.

Surface integral

$$
\int_{S} d \vec{S} \cdot \vec{F}(\vec{r}) \approx \sum_{i=1}^{N} d \vec{S}_{i} \cdot \vec{F}\left(\vec{r}_{i}\right)
$$

(Pictures from Wikipedia)

$\vec{F}\left(\vec{r}_{i}\right)$ The field at $\overrightarrow{\boldsymbol{r}}_{\boldsymbol{i}}$ piercing through the surface

Divide the surface into small segments $d S$.
A small segment of the surface S and its contribution to the surface integral is given by

$$
d \vec{S}_{i} \cdot \vec{F}\left(\vec{r}_{i}\right)=d S_{i} F\left(\vec{r}_{i}\right) \cos \theta=d S_{i} F_{n}\left(\vec{r}_{i}\right)
$$

$d \vec{S}_{i}$ is a vector at position $\overrightarrow{\boldsymbol{r}}_{i}$ on the surface S with magnitude $d S_{i}$ (area ot the small segment) and normal (perpendicular) to the surface.

Volume integral over a scalar field

$$
\int_{V(S)} d V \phi(\vec{r}) \approx \sum_{i=1}^{N} d V_{i} \phi\left(\vec{r}_{i}\right)
$$

Stokes formula

$$
\int_{C(S)} d \vec{r} \cdot \vec{F}(\vec{r})=\int_{S} d \vec{S} \cdot(\nabla \times \vec{F}(\vec{r}))
$$

Consider a closed loop

\rightarrow divide into small segments

The surface is arbitrary, as long as it encloses the loop C

Recall that the work done by the vector field \boldsymbol{F} around a small loop is equal to the rotation multiplied by the area of the loop:

$$
d \vec{r} \cdot \vec{F}(\vec{r})=d \vec{S} \cdot(\nabla \times \vec{F}(\vec{r}))
$$

When summing over the small segments, contributions from the inner paths cancel out.

Gauss formula

Surface S enclosing volume V

$$
\int_{S(V)} d \vec{S} \cdot \vec{F}(\vec{r})=\int_{V(S)} d V \nabla \cdot \vec{F}(\vec{r})
$$

flux going out of $S_{1}=$ flux going into S_{2}
Recall that divergence of a vector field multiplied by the volume is equal to the flux out of the volume:

$$
d \vec{S} \cdot \vec{F}(\vec{r})=d V \nabla \cdot \vec{F}(\vec{r})
$$

When sum over the small volume segments, contribution from a surface of two neighbouring volumes cancels out.
\rightarrow Only outer surface matters (in analogy to Stokes formula, in which only the outer loop matters)

Conservative field

A vector field is called conservative if
the work done by the field from point A to point B is independent of the path.

$$
\int_{\Gamma_{1}} d \vec{r} \cdot \vec{F}(\vec{r})=\int_{\Gamma_{2}} d \vec{r} \cdot \vec{F}(\vec{r})
$$

A

If the field is conservative then the work done around a closed loop is zero because the work done from A to B is the negative of the work done from B to A. In other words, going from A to B and then back to A is the same as going from A to A, i.e., not moving at all so that there is no work done.

A conservative field implies that it can be obtained as a gradient of a scalar field:

$$
\vec{F}(\vec{r})=-\nabla \phi(\vec{r})
$$

Check that the work done is independent of the path:

$$
\begin{aligned}
\int_{A}^{B} d \vec{r} \cdot \vec{F}(\vec{r}) & =-\int_{A}^{B} d \vec{r} \cdot \nabla \phi(\vec{r}) \\
& =-\int_{A}^{B}\left(d x \frac{\partial \phi}{\partial x}+d y \frac{\partial \phi}{\partial y}+d z \frac{\partial \phi}{\partial z}\right) \\
& =-\int_{A}^{B} d \phi \\
& =-[\phi(B)-\phi(A)]
\end{aligned}
$$

A conservative field also implies that $\nabla \times \vec{F}(\vec{r})=0$

This follows from the mathematical identity $\quad \nabla \times(\nabla \phi)=0$

It can also be understood from Stokes theorem:

$$
\int_{C(S)} d \vec{r} \cdot \vec{F}(\vec{r})=\int_{S(C)} d \vec{S} \cdot(\nabla \times \vec{F})=0 \quad \begin{aligned}
& \text { because the work done around a closed loop is zero } \\
& \text { for a conservative field. }
\end{aligned}
$$

True for any surface $S(C)$ so that $\nabla \times \vec{F}(\vec{r})=0$

Defining a line or curve in 3D

A line in three-dimensional space can be defined by a parameter λ, with value from 0 to 1 .

$$
\vec{r}(\lambda)=(x(\lambda), y(\lambda), z(\lambda))
$$

As λ is varied from 0 to 1 , the vector position $r(\lambda)$ traces a curve in space.
Alternatively, one can eliminate λ and uses one of the coordinates as a parameter.

Examples: $\quad \vec{r}(\lambda)=\left(\lambda, \lambda^{2}, 0\right) \quad \vec{r}(x)=\left(x, x^{2}, 0\right) \quad$ This defines a parabola $y=x^{2}$ in x-y plane.

$$
\vec{r}(\lambda)=\left(\lambda, 2 \lambda, \lambda^{2}\right) \quad \vec{r}(x)=\left(x, 2 x, x^{2}\right) \quad \text { This defines a curve in } 3 \mathrm{D} \text { with } y=2 x \text { and } z=x^{2}
$$

Differential:

$$
d \vec{r}(\lambda)=(d x(\lambda), d y(\lambda), d z(\lambda))=\left(\begin{array}{lll}
d x & d y & d z \\
d \lambda & d \lambda & d \lambda
\end{array}\right) d \lambda
$$

Example of conservative field: gravitational field

Gravitational potential: $\phi(z)=g z$
Gravitational force

$$
\vec{F}=-\nabla \phi(z)=-g \vec{e}_{z}
$$

Negative sign means the force is directed downwards, towards the earth's surface

Work done by the field

$$
W=\int_{A}^{B} d \vec{r} \cdot \vec{F}(\vec{r})=-g \int_{A}^{B} d \lambda\left(\frac{d x}{d \lambda} \vec{e}_{x}+\frac{d y}{d \lambda} \vec{e}_{y}+\frac{d z}{d \lambda} \vec{e}_{z}\right) \cdot \vec{e}_{z}
$$

z is the height from earth's surface

$$
\vec{r}(\lambda)=(\lambda, 0, \sin (\pi \lambda))
$$

$$
\begin{aligned}
& =-g \int_{A}^{B} d \lambda \frac{d z}{d \lambda} \\
& =-g \int_{0}^{1} d z=-g z_{0}^{1}=-g
\end{aligned}
$$

The work done by a person climbing up the hill from A to B is then $-W=g$ (the negative of the work done by the field). Since the field is conservative, the work done is also given by

$$
W=-[\phi(B)-\phi(A)]=-g
$$

