Answers to problems; EXAMINATION IN CHAOS 2007-01-11, 8-13

4. $0 \leq r \leq \frac{3 \sqrt{3}}{2}$, Fixed points: $x=0, x=\sqrt{1-1 / r}$. Bifurcation from one-periodic to two-periodic: $r=2$.
5.

$$
D_{B}=1+\frac{\log \left(L_{1}\right)-\log \left(L_{2}\right)}{\log \left(\delta_{2}\right)-\log \left(\delta_{1}\right)} \approx 1+\frac{3.5-3.33}{2.75-1.60} \approx 1.15
$$

6. a) $x_{1}=x, x_{2}=\dot{x}, x_{3}=t$.

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}^{5}-0.08 x_{2}+A \cos \left(x_{3}\right) \\
\dot{x}_{3} & =1
\end{aligned}
$$

Lie derivative: $-0.08 \Longrightarrow$ dissipative.
b) Yes: Non-linear (x^{5} term), dissipative, 3-dim flow
c) $\lambda_{1}+\lambda_{2}=-0.08 \Longrightarrow \lambda_{1}=0.04$, one positive Lyapunov exponent means that the system is chaotic.
7. a)

$$
H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{4}{3} x^{3}-\frac{1}{3} y^{3}
$$

b)

$$
\begin{aligned}
\dot{x} & =p_{x} / m \\
\dot{y} & =p_{y} / m \\
\dot{p}_{x} & =-4 x^{2} \\
\dot{p}_{y} & =y^{2}
\end{aligned}
$$

c) The system is separable and thus integrable

