Solutions to problems; EXAMINATION IN CHAOS 2005-10-21, 14-19

4. The fixed points x^{*} are determined from $x^{*}=f\left(x^{*}\right)$. It is then evident that $x^{*}=0$ is a fixed point for all a. From the figure of $f(x)$, you conclude that there is another fixed point for $1 \leq a \leq 2$ which is determined from

$$
x^{*}=a\left(1-x^{*}\right) \quad \Rightarrow \quad x^{*}=\frac{a}{1+a}
$$

The Lyapunov exponent is determined from mean value of $\ln \left|f^{\prime}(x(j))\right|$ for an iteration

$$
\lambda=\frac{1}{N} \sum_{j=0}^{N-1} \ln \left|f^{\prime}(x(j))\right|
$$

in the limit when $N \rightarrow \infty$. In the present case, $\left|f^{\prime}(x)\right|=a$ for all x (except $x=1 / 2$) which leads to $\lambda=\ln (a)$.

$f(x)$ and $f^{(2)}(x)$ for $a=2$ are shown above. If one notes that also $f^{(2)}(x)$ must be built from straight lines, it is easy to find $f^{(2)}(x)$ if one calculates it for a few x-values.
If you want to derive $f^{(2)}(x)$ more formally, you have to divide the interval into four parts:

* $0 \leq x \leq 1 / 4$: In this interval, $f(x)=2 x$ will fall in the interval $[0,0.5]$ so you should apply $f(x)=2 x$ once more, $f^{(2)}(x)=2(2 x)=4 x$.
* $1 / 4 \leq x \leq 1 / 2: f(x)=2 x$ will fall in the interval $[0.5,1.0]$ so you must apply $f(x)=2(1-x)$ in the second step, $f^{(2)}(x)=2(1-(2 x))=2(1-2 x)$.
* $1 / 2 \leq x \leq 3 / 4$: In this interval, $f(x)=2(1-x)$ and the result fall in the interval $[0.5,1.0]$ so you must apply $f(x)=2(1-x)$ once more, $f^{(2)}(x)=2(1-(2(1-x)))=$ $2(2 x-1)$.
* $3 / 4 \leq x \leq 1: ~ f(x)=2(1-x)$ falls in the interval $[0,0.5]$ so you must apply $f(x)=2 x$ in the second step, $f^{(2)}(x)=2 *(2(1-x))=4(1-x)$.

5. We use the formula

$$
\sum_{i=1}^{n}\left(c_{i}\right)^{D}=1
$$

The first fractal is formed from one map with the length scale $1 / 4$ and another map with the length scale $1 / 2$. Thus

$$
\left(\frac{1}{4}\right)^{D}+\left(\frac{1}{2}\right)^{D}=1 \quad \Rightarrow \quad\left(\left(\frac{1}{2}\right)^{D}\right)^{2}+\left(\frac{1}{2}\right)^{D}=1
$$

With $x=\left(\frac{1}{2}\right)^{D}$, you get the equation $x^{2}+x-1=0$ which has the solutions

$$
x=-\frac{1}{2} \pm \sqrt{1 / 4+1} \quad \Rightarrow \quad\left(\frac{1}{2}\right)^{D}=\sqrt{1.25}-0.5
$$

where we have chosen the positive solution because $\left(\frac{1}{2}\right)^{D}$ is positive. Thus $D=$ $-\ln (\sqrt{1.25}-0.5) / \ln 2 \approx 0.694$.
The second fractal is formed from three maps with the length scale $1 / 4$. Thus

$$
3\left(\frac{1}{4}\right)^{D}=1 \quad \Rightarrow \quad D=\frac{\ln (1 / 3)}{\ln (1 / 4)}=\frac{\ln 3}{\ln 4} \approx 0.792
$$

c) If the first fractal is iterated 3 steps, it can be covered by 8 lines of length $L / 16$ as shown by thick lines below. Note that you would have needed 9 lines if you have iterated only 2 steps. Furthermore, because one line is longer than the measuring unit after three iterations ($L / 8$ compared with $L / 16$), you must convince yourself that you will not need fewer than 8 lines to cover the fractal after a fourth iteration.

For the second fractal, you would only need to iterate two steps but three iterations are illustrated below. You need 9 lines to cover the fractal.

The fact that you need more lines to cover the second fractal is consistent with the fact that it has a larger dimension than the first fractal.
6. The two equations can be written, $\dot{x}=f_{1}(x, y), \dot{y}=f_{2}(x, y)$. A fixed point corresponds to $\dot{x}=\dot{y}=0$. It is then trivial to insert $(x, y)=\left(\frac{c}{d}, \frac{a}{b}\right)$ and show that $f_{1}(c / d, a / b)=0$ and $f_{2}(c / d, a / b)=0$.
The stability is determined from the eigenvalues of the Jacobian, which are calculated from the Jacobian:

$$
D \mathbf{f}(x, y)=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)
$$

With f_{1} and f_{2} as given in the text:

$$
D \mathbf{f}(x, y)=\left(\begin{array}{cc}
r c\left(-\frac{1}{x^{2}}\right)+a-b y & -b x \\
d y & -r a\left(-\frac{1}{y^{2}}\right)-c+d x
\end{array}\right)
$$

and thus
$D \mathbf{f}\left(\frac{c}{d}, \frac{a}{b}\right)=\left(\begin{array}{cc}-r c\left(\frac{d^{2}}{c^{2}}\right)+a-b(a / b) & -b(c / d) \\ d(a / b) & r a\left(\frac{b^{2}}{a^{2}}\right)-c+d(c / d)\end{array}\right)=\left(\begin{array}{cc}-r\left(\frac{d^{2}}{c}\right) & -b c / d \\ d a / b & r\left(\frac{b^{2}}{a}\right)\end{array}\right)$
The eigenvalues $h_{1,2}$ are now determined from the equation

$$
\left|\begin{array}{cc}
-r\left(\frac{d^{2}}{c}\right)-h & -b c / d \\
d a / b & r\left(\frac{b^{2}}{a}\right)-h
\end{array}\right|=0
$$

i.e.

$$
\left(r\left(\frac{d^{2}}{c}\right)+h\right)\left(r\left(\frac{b^{2}}{a}\right)-h\right)-(b c / d)(d a / b)=0
$$

This equation has the solution:

$$
h_{1,2}=\frac{r}{2} \frac{b^{2} c-a d^{2}}{a c} \pm \sqrt{\frac{r^{2}}{4}\left(\frac{b^{2} c-a d^{2}}{a c}\right)^{2}+\frac{r^{2} b^{2} d^{2}}{a c}-a c}
$$

With higher orders of r neglected:

$$
h_{1,2}=\frac{r}{2} \frac{b^{2} c-a d^{2}}{a c} \pm i \sqrt{a c}
$$

In this limit, the eigenvalues are complex and the stability is determined from $\operatorname{Re}\left(h_{1,2}\right)$. Because $b^{2} c-a d^{2}>0, \operatorname{Re}\left(h_{1,2}\right)<0$ for $r<0$ which means that the equilibrium is stable while $r>0$ leads to $\operatorname{Re}\left(h_{1,2}\right)>0$ corresponding to an unstable equilibrium.
7. When writing the map in standard form, you just put in $x(j+1)$ according to the first equation into the second equation. Thus

$$
\left\{\begin{array}{l}
x(j+1)=2 x(j)+y(j)^{\alpha}=f_{1}(x(j), y(j)) \\
y(j+1)=2 x(j)+y(j)^{\alpha}+b(x(j)+y(j))=f_{2}(x(j), y(j))
\end{array}\right.
$$

where the second equation can be rewritten as

$$
y(j+1)=(2+b) x(j)+y(j)^{\alpha}+b y(j)
$$

The map is area-conserving if the determinant of the Jacobian is equal to 1, i.e.

$$
\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
2 & \alpha y^{\alpha-1} \\
2+b & b+\alpha y^{\alpha-1}
\end{array}\right|=1
$$

This equation leads to $2 b-b \alpha y^{\alpha-1}=1$ which can be fulfilled for all values of y either if $\alpha=1$, leading to the equation $2 b-b=1$ and thus $b=1$, or for $\alpha=0$ leading to $2 b=1$ and thus $b=1 / 2$. Note also that the general requirement for area conservation is rather $|\operatorname{det}(\mathbf{f}(x, y))|=1$ and with $\operatorname{det}(\mathbf{f}(x, y))$ negative instead, you get a sign change for b.
c) We will consider the (non-trivial) values $\alpha=1$ and $b=1$:

$$
\left\{\begin{array}{l}
x(j+1)=2 x(j)+y(j) \\
y(j+1)=3 x(j)+2 y(j)
\end{array}\right.
$$

The eigenvalues are obtained from the equation

$$
\left|\begin{array}{cc}
2-\tilde{h} & 1 \\
3 & 2-\tilde{h}
\end{array}\right|=0
$$

which leads to $\tilde{h}_{1,2}=2 \pm \sqrt{3}$. The eigenvalues are thus independent of x and y which means that the Lyapunov exponents must be the same for all iterations. They are obtained as

$$
\begin{aligned}
& \lambda_{1}=\ln (2+\sqrt{3}) \approx 1.317 \\
& \lambda_{2}=\ln (2-\sqrt{3}) \approx-1.317
\end{aligned}
$$

With $\alpha=0$ and $b=1 / 2, \tilde{h}_{1}=2$ and $\tilde{h}_{2}=1 / 2$ and thus

$$
\begin{aligned}
& \lambda_{1}=\ln 2 \approx 0.693 \\
& \lambda_{2}=\ln (1 / 2) \approx-0.693
\end{aligned}
$$

Also for these values of α and b, the eigenvalues are independent of x and y so the Lyapunov exponents are the same for all iterations also in this case.
Alternatively, from the fact that the functions are linear for both values of b and α, you can conclude that the Lyapunov exponents must be independent of the initial values but you are still asked to calculate their values.

