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Chapter 1

Abstract Group Theory

1.1 Group

A group is a set of elements that have the following properties:

1. Closure: if a and b are members of the group, c = ab is also a
member of the group.

2. Associativity: (ab)c = a(bc) for all a, b, c in the group.

3. Unit element: there is an element e such that ea = a for every
element a in the group.

4. Inverse: to every element a there is a corresponding inverse element
a−1 in the group such that a−1a = e.

The following properties follow from the above definition:

1. Left cancellation: If ax = ay then x = y for all a in the group.
Proof: ax = ay → a−1(ax) = a−1(ay) → (a−1a)x = (a−1a)y →
ex = ey → x = y.

2. Unit element on the right: ae = a = ea.
Proof: a−1(ae) = (a−1a)e = ee = e = a−1a and using the left
cancellation law we have ae = a.

1



2 CHAPTER 1. ABSTRACT GROUP THEORY

3. Inverse element on the right: aa−1 = e = a−1a.
Proof: a−1(aa−1) = (a−1a)a−1 = ea−1 = a−1 = a−1e. Using the
left cancellation law, aa−1 = e.

4. Right cancellation: If xa = ya then x = y for all a in the group.
Proof: xa = ya → (xa)a−1 = (ya)a−1 → x(aa−1) = y(aa−1) →
xe = ye→ x = y.

We note the importance of associativity in the above proofs.

The following identity is often useful:

(ab)−1 = b−1a−1

which follows from (ab)−1(ab) = 1→ (ab)−1a = b−1 → (ab)−1 = b−1a−1.

1.2 Abelian Group

If a group has a further property that ab = ba for all a, b in the group, the
group is called Abelian.

1.3 Subgroup

A subgroup is a set of elements within a group which forms a group by
itself. Evidently, the unit element forms a subgroup by itself.

We note that the definition of a group does not require all elements to
be distinct from one another. However, when two elements are identical,
then one of them is redundant so that we usually assume that all elements
are different. A group with n identical elements evidently has at least n
identical subgroups.

1.4 Examples

1. Integers under addition. The unit element e = 0 and the inverse of
an element a is a−1 = −a. This group is Abelian and infinite.
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2. A set of all n × n unitary matrices U (U † = U−1) under matrix
multiplication. The unit element is the unit matrix and the inverse
of U is U † by definition. We have to show that a product of two
unitary matrices is unitary .

(U1U2)† = U †2U
†
1

= U−1
2 U−1

1

= (U1U2)−1

3. The set of permutation operations that take ABC into ABC, ACB,
BAC, CAB, BCA, CBA. The elements of the group are

e =
(
A B C
A B C

)
α =

(
A B C
B C A

)
β =

(
A B C
C A B

)

γ =
(
A B C
A C B

)
µ =

(
A B C
C B A

)
ν =

(
A B C
B A C

)

The operation αβ means: first do permutation β and then permuta-
tion α on the previous result. We show below that every permutation
has an inverse permutation and two successive permutations corre-
spond to a single permutation i.e. the permutations form a group.

We see from the above examples that ”multiplication” can mean addi-
tion, matrix multiplication etc. or simply that one operation is performed
on the result of the preceeding operation like in the example 3.

1.5 Multiplication Table

The group multiplication table is a matrix Mab = ab, where a and b are
elements of the group and the matrix element corresponding to row a and
column b is given by the group multiplication ab. We illustrate this defini-
tion by constructing the multiplication table of the permutation group in
the example 3 above.
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e α β γ µ ν
e e α β γ µ ν
α α β e µ ν γ
β β e α ν γ µ
γ γ ν µ e β α
µ µ γ ν α e β
ν ν µ γ β α e

Thus, for example, the inverse of α is β and vice versa. The group is
clearly not Abelian because e.g. αγ 6= γα. The elements (e, γ) form a
subgroup, so do (e, µ), (e, ν) and (e, α, β). Obviously, the unit element e
forms a subgroup by itself.

The group multiplication table mathematically characterises the group.
All groups with the same multiplication table are mathematically identical
with respect to their group properties. The multiplication table has the
following properties:

1. Rearrangement Theorem: In every row or column, each element must
appear once and once only and therefore each row (column) is dif-
ferent from any other row (column).
Proof: Suppose element b appears twice in the row a. This means
that ac = b and ad = b where c 6= d. But this implies that
ac = ad → c = d which is a contradiction. Thus element b cannot
appear more than once and since the size of the row or column is the
same as the number of elements in the group, it follows that each
element must appear once and once only.

2. The multiplication table is symmetric across the diagonal when the
group is Abelian because the elements commute with one another.

1.6 Cyclic Groups

A group of n elements is said to be cyclic if it can be generated from one
element. The elements of the group must be

a, a2, a3, . . . , an = e
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n is called the order of the cyclic group. A cyclic group is evidently Abelian
but an Abelian group is not necessarily cyclic. It is shown below that every
non-cyclic group has at least a cyclic subgroup.

Examples of cyclic groups are the subgroups of the permutation group in
the example 3. The subgroup (e, α, β) is the same as (α, α2 = β, α3 = e).

1.7 Order of an Element

Let a 6= e be an element of a group. Form the products a2, a3, . . .. a2

must be either e or a different element from a because if a2 = a→ a = e.
If a2 6= e we continue forming a3. By a similar argument, a3 must be
either e or a different element from a and a2. If a, a2, . . . , an are distinct
from each other and an = e then n is called the order of element a. These
elements form a cyclic group. Thus every group must have at least one
cyclic subgroup. In the example 3 above, α and β are of order 3 and γ, µ,
and ν are of order 2.

1.8 Properties of Finite Groups

We summarise below the properties of finite groups.

1. Every element a has a finite order n such that an = e.

2. Rearrangement Theorem: Multiplying all elements in a group by an
arbitrary element reproduces the group. This has been proven above
in the properties of the multiplication table.

3. Every non-cyclic group has at least a cyclic subgroup.

1.9 Cosets

If S is a subgroup of G and a is an element of G not in S, then the sets
aS and Sa are called the left and right cosets of S respectively. a cannot
be a unit element and therefore a coset can never be a group because it
has no unit element. It is also evident that aS or Sa have no element in
common with S for otherwise, a should be included in S. Morevoer, if b is
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an element of G which is neither in S nor in aS, then bS has no element
in common with either S or aS.
Proof: Let x and y be in S such that ax = by. We have axy−1 = b, but
xy−1 is an element in S and therefore b is in aS which is a contradiction.

Consequently, a finite group can be factorised as

G = S + aS + bS + . . .

but the factorisation is not unique. It depends on the choice of S, a, b,
. . ., etc. The number of factors must be finite and the factorisation must
exhaust the group. Thus we have the following theorem:
Let h be the number of elements of a group G and g be the number of
elements of a subgroup S of G. Then

h

g
= integer

As a consequence, if h is prime then G must be cyclic and it has no
subgroup other than the trivial subgroup of e.

1.10 Class

Two elements a and b of a group are conjugate to one another if there is
an element g in the group such that

a = gbg−1 (1.1)

(Since every element has an inverse, it also follows that b = g′ag′−1 where
g′ = g−1). The transformation gbg−1 is often called a similarity transfor-
mation. If a and b are conjugate to each other and b and c are conjugate to
each other, then a and c are also conjugate to each other. This is because
a = g1bg

−1
1 and b = g2cg

−1
2 → a = g1g2cg

−1
2 g−1

1 = g1g2c(g1g2)−1.
A class C is a set of elements which are conjugate to each other. The

unit element evidently forms a class by itself. If G is Abelian, each element
also forms a class by itself. It is clear that a group may be broken up into
classes

G = C1 + C2 + . . .

and an element cannot belong to more than one class.
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As an example, we work out one of the classes of the permutation
group. In working out the classes, it is obviously not necessary to consider
similarity transformations with either the unit element or the element itself.
We use the multiplication table that we have constructed previously:

βαβ−1 = βαα = ββ = α

γαγ−1 = γαγ = γµ = β

µαµ−1 = µαµ = µν = β

ναν−1 = ναν = νγ = β

Thus α and β belong to the same class. Similarly we can show that (γ, µ, ν)
also form a class.

Elements belonging to the same class usually have the same characteris-
tic. In the above example, α and β both correspond to cyclic permutations
whereas γ, µ, and ν correspond to permutations with one member fixed.

1.11 Isomorphism and Homomorphism

Two groups are said to be isomorphic if they have the same multiplication
table, by reordering the elements if necessary. If F is isomorphic to G then
there is a one-to-one correspondence between the elements of F and G,
fi → gi, such that if fifj = fk then gigj = gk. Two groups can only
be isomorphic if they have the same number of elements. As an example,
the permutation group in the example 3 is isomorphic to the symmetry
operations that take an equilateral triangle into itself. This isomorphism
can be seen by labelling the corners of the triangle with A,B,C.

Homomorphism is similar to isomorphism except that the relationship
is many-to-one. Two groups G and G′ are said to be homomorphic if each
element of G can be associated with some elements of G′: a → a′ =
(a′1, a′2, . . .), b → b′ = (b′1, b′2, . . .), c → c′ = (c′1, c′2, . . .), such that if
ab = c then a′ib′j = c′k i.e. for every i, j, c′k lies in c′.
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1.12 Invariant Subgroup

We prove the following theorem:

Theorem: If S is a subgroup of G and a is an element of G then
S ′ = aSa−1 is also a subgroup and it is isomorphic to S. We assume
that the elements of S are distinct.

Proof: We first show that the elements of S ′ are distinct. Let asia
−1 =

asja
−1 and i 6= j. Then by the cancellation law, si = sj, which is a

contradiction. Thus the elements of S ′ are distinct. We now show that if
sisj = sk then s′is′j = s′k. Proof: s′is′j = asia

−1asja
−1 = asisja

−1 =
aska

−1 = s′k. Thus S and S ′ are isomorphic with the same unit element
e′ = aea−1 = e and the inverse of s′i is s′i

−1 = (asia
−1)−1 = as−1

i a−1 =
(s−1
i )′.

If S ′ is the same as S for every a in the group then the subgroup S is
called an invariant subgroup. This implies that the left coset of S is the
same as its right coset, i.e.

aS = Sa

If we break a group into its cosets,

G = S + aS + bS, . . .

with an invariant subgroup S, then these cosets form a group with the unit
element equal to S. Thus aSbS = abSS = abS = cS if ab = c. This
group is called a factor group. It is an example of homomorphism where
the invariant subgroup S is associated with the elements of S and the coset
aS is associated with the elements of aS.

1.13 Direct Product Group

Let F be a group with elements fi, i = 1, . . . , hF , and G be a group with
elements gi, i = 1, . . . , hG, such that figj = gjfi for all i and j. The
direct product group F ⊗G is defined to be the set of all distinct elements
figj. If F and G have no common element, apart from the identity, then
the order of the direct product group will be hFhG.

We show that F ⊗G is a group.
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1. Closure: (figj)(fkgl) = (fifk)(gjgl) = frgs. Since fr is in F and gs
is in G then by definition frgs is in F ⊗G.

2. Unit element is eF eG.

3. Inverse of figj is (figj)
−1 = g−1

j f−1
i = f−1

i g−1
j .

4. Associativity: obvious.

We have the following theorem:

Theorem: The classes of the direct product group are given by the direct
products of the classes of the individual groups.

Proof: We label the elements of the product group aij = figj. According
to the definition of a class, we have

Cij = a−1
rs aijars, for all r, s

= f−1
r g−1

s figjfrgs

= (f−1
r fifr)(g

−1
s gjgs)
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Chapter 2

Theory of Group
Representations

2.1 Definitions

A group {A,B,C, ...} may be represented by a set of square matrices
{T (A), T (B), T (C), . . .}. These matrices are said to form a representa-
tion for the group if they satisfy the same group multiplication rule:

AB = C → T (A)T (B) = T (C) (2.1)

The identity element E is represented by a unit matrix and each matrix
must have an inverse. Some or all of the matrices may be the same. If
the matrices are different, the representation is called faithful (isomorphic).
The order of the matrices is called the dimension of the representation.

2.2 Equivalent Representations

If T is a representation then

T ′ = S−1TS (2.2)

with an arbitrary but non-singular S is also a representation because

T ′(A)T ′(B) = S−1T (A)SS−1T (B)S

11
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= S−1T (A)T (B)S

= S−1T (AB)S

= T ′(AB)

T and T ′ are equivalent and there are an infinite number of equivalent
representations.

2.3 Reducible and Irreducible Represen-

tation

A representation T is reducible if there exists a non-singular matrix S such
that the equivalent representation T ′ = S−1TS has the form

T ′ =




T1

T2

T3

.
.




for all elements in the group. T1, T2, T3, . . . are square matrices and the
rest of the elements are zero. The representation is irreducible if it cannot
be reduced into the above form.

2.4 Equivalent Unitary Representation

There are an infinite number of equivalent representations but it is possible
to find one which is unitary.
Theorem 1:
Given an arbitrary representation T , there is always an equivalent unitary
representation.

Proof:
Construct a Hermitian matrix

H =
∑

G

T (G)T †(G)
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According to matrix algebra, we can always diagonalise a Hermitian matrix
by a unitary transformation

D = U−1HU

=
∑

G

U−1T (G)T †(G)U

=
∑

G

U−1T (G)UU−1T †(G)U

=
∑

G

T ′(G)T ′†(G)

U is made up of the eigenvectors of H and D is diagonal by definition and
its diagonal elements are real and positive.

Djj =
∑

G

∑

k

T ′jk(G)T ′†kj(G)

=
∑

G

∑

k

T ′jk(G)T ′∗jk(G)

=
∑

G

∑

k

|T ′jk(G)|2 ≥ 0

In fact, it can never be equal to zero because otherwise T ′ = 0. Since D is
diagonal, we may define a diagonal matrix D−1/2 with diagonal elements
equal to D

−1/2
ii so that

1 = D−1/2
∑

G

T ′(G)T ′†(G)D−1/2

Using the above result, the matrix T ′′(G) = D−1/2T ′(G)D1/2 can be shown
to be unitary.

T ′′(G)T ′′†(G) = D−1/2T ′(G)D1/2[D−1/2
∑

G′
T ′(G′)T ′†(G′)D−1/2]

× D1/2T ′†(G)D−1/2

= D−1/2
∑

G′
T ′(G)T ′(G′)T ′†(G′)T ′†(G)D−1/2

= D−1/2
∑

G′
T ′(G)T ′(G′)[T ′(G)T ′(G′)]†D−1/2

= D−1/2
∑

G′
T ′(GG′)T ′†(GG′)D−1/2
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= D−1/2
∑

G′′
T ′(G′′)T ′†(G′′)D−1/2

= 1

The second last step has been obtained by using the Rearrangement The-
orem. Thus, given an arbitrary representation T , it is always possible to
construct a unitary representation by forming

T ′′ = D−1/2U−1TUD1/2 (2.3)

From now on we assume that we have a unitary representation.

2.5 Schur’s Lemma

Schur’s lemma is used in proving many of the theorems in group theory.
Theorem 2 (Schur’s lemma):
Given that [M,T ] = MT − TM = 0 for all elements in the group, then
(a) if T is irreducible, M = cI where c is a constant and I is a unit matrix.
(b) if M 6= cI then T is reducible.

Proof: We first show that it is sufficient to prove the theorem for a Her-
mitian M .

TM = MT

(TM)† = (MT )†

M †T † = T †M †

T (M †T †)T = T (T †M †)T

TM † = M †T

since T † = T−1 (unitary). Adding and substracting the first and the last
equations, we get

T (M +M †) = (M +M †)T

and
T i(M −M †) = i(M −M †) T

Let H1 = M +M † and H2 = i(M −M †) so that [H1, T ] = [H2, T ] = 0.
H1 and H2 are Hermitian and M = 1/2(H1−iH2). Thus, if the theorem is
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true for a Hermitian matrix, it must be true for M . We can now assume M
to be Hermitian and perform a unitary transformation so that M becomes
diagonal, D = U−1MU , and define an equivalent representation T ′ =
U−1TU . Then

T ′D = U−1TUU−1MU

= U−1TMU

= U−1MTU

= U−1MUU−1TU

= DT ′

We have to show that the diagonal elements of D are all identical if T , or
equivalently T ′, is irreducible. Consider the ij, i 6= j, element,

T ′ijDjj = DiiT
′
ij

T ′ij(Djj −Dii) = 0 (2.4)

Let us order the diagonal elements of D such that Dii ≤ Djj for i < j
which can always be done by rearranging the columns of U . Suppose
D11 = Dnn and D11 < Dii where n ≥ 1 and i > n. Then it follows from
Eq. ( 2.4) that T ′ must have the form

T ′ =
(
X 0
0 Y

)

where X is an n× n matrix, i.e. T ′ is reducible.
Let us summarise the conclusions: If M 6= cI then T must be reducible.

If M = cI then obviously it commutes with T whether it is reducible or
irreducible. Hence if T is irreducible then M must be equal to cI for oth-
erwise T would be reducible.

Theorem 3:
Given TαM = MT β, where Tα and T β are irreducible representations of
dimension lα and lβ respectively and M is a rectangular lα × lβ matrix,
then
(a) if lα 6= lβ, M = 0 or
(b) if lα = lβ either M = 0 or |M | 6= 0. In the latter case, M will have an



16 CHAPTER 2. THEORY OF GROUP REPRESENTATIONS

inverse so that Tα and T β are equivalent.

Proof:

T α(G)M = MT β(G)

(Tα(G)M)† = (MT β(G))†

M †Tα†(G) = T β
†
(G)M †

M †Tα−1(G) = T β
−1

(G)M †

MM †Tα−1(G) = MT β
−1

(G)M †

MM †Tα(G−1) = MT β(G−1)M †

MM †Tα(G−1) = Tα(G−1)MM †

Since T α is irreducible, it follows from Schur’s lemma (Theorem 2) that
MM † = cI. Consider the case lα = lβ.

|MM †| = |cI|; |M ||M †| = ||M ||2 = clα

If c 6= 0, then |M | 6= 0 i.e. M−1 exists. It follows that T α and T β are
equivalent since

M−1(Tα(G)M) = M−1(MT β(G)) = T β(G)

If c = 0, then MM † = 0. Let us look at the diagonal elements of MM †:
∑

k

MikM
†
ki = 0

∑

k

MikM
∗
ik = 0

∑

k

|Mik|2 = 0

Since this is positive definite, each term must vanish i.e. M = 0. Consider
now the case lα 6= lβ, lα > lβ. We enlarge M into a lα× lα square matrix
N with the additional elements equal to zero. Then NN † = MM † = cI.
But |N | = 0 because one of its columns is zero.

NN † = cI → |NN †| = clα → |N ||N †| = clα → c = 0

Hence NN † = 0 which implies N = 0. Since M is contained in N , then
M = 0.
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2.6 Orthogonality Theorem

We are now in a position to prove the Orthogonality Theorem which is
central in representation theory.

Theorem 4: Orthogonality Theorem

∑

G

Tαij(G)∗T βkl(G) = (h/lα)δαβδikδjl (2.5)

α and β label the irreducible representations, lα and lβ are the dimensions
of these irreducible representations, and h is the number of elements in the
group.

Proof:
Define a matrix

M =
∑

G

T α(G)XT β(G−1)

where X is an arbitrary matrix and α 6= β. We want to show that this
matrix satisfies the postulates of Theorem 3. Consider

T α(A)M =
∑

G

Tα(A)T α(G)XT β(G−1)

=
∑

G

Tα(A)T α(G)XT β(G−1)T β(A−1)T β(A)

=
∑

G

Tα(AG)XT β(G−1A−1)T β(A)

=
∑

G

Tα(AG)XT β((AG)−1)T β(A)

=
∑

G

Tα(AG)XT β
−1

(AG)T β(A)

=
∑

G

[Tα(G)XT β
−1

(G)]T β(A)

= MT β(A)

We have again made use of the Rearrangement Theorem in the second last
step. According to Theorem 3, M = 0 since we are considering the case
of α 6= β so that

Mij = 0 =
∑

G

∑

kl

Tαik(G)XklT
β
lj(G

−1)



18 CHAPTER 2. THEORY OF GROUP REPRESENTATIONS

Since X is arbitrary, we may set Xkl = δkmδln. Then
∑

G

T αim(G)T βnj(G
−1) =

∑

G

T αim(G)T β
−1

nj (G)

=
∑

G

T αim(G)T β
†
nj(G)

=
∑

G

T αim(G)T β
∗
jn(G)

= 0

When α = β, according to Schur’s lemma (Theorem 2)

Mij = c δij =
∑

G

∑

kl

T αik(G)XklT
α
lj (G

−1)

=
∑

G

T αim(G)Tαnj(G
−1)

Putting i = j and summing over i yields

c lα =
∑

G

∑

i

Tαim(G)T αni(G
−1)

=
∑

G

T αnm(E)

= hδnm

Thus we have ∑

G

Tαim(G)Tαnj(G
−1) = (h/lα)δnmδij

Since T is unitary,
∑

G

Tαim(G)T αjn(G)∗ = (h/lα)δnmδij

Eqn. ( 2.5) has the form of a dot product with Tαij(G) as the G’th
component of a vector labelled by α, i and j, in the h dimensional space of
the group elements. This means that the number of distinct labels (α, i, j)
cannot exceed h, i.e.

∑
α l

2
α ≤ h. It will be proven later that in fact

∑
α

l2α = h

The result is very useful in working out the irreducible representations of a
group.
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2.7 The Characters of a Representation

We have seen that a representation is not unique. We recall that if T is a
representation, so is T ′ = S−1TS. Given T and T ′, how can we then tell
that they are equivalent ? One way will be to figure out if there is a matrix
S, such that T ′ = S−1TS. But this is a complicated procedure. What
we are looking for are properties of a matrix which are invariant under a
similarity transformation. The eigenvalues are one of them but they are
too cumbersome to calculate. A simpler quantity is the trace of a matrix
or the sum of the diagonal elements:

χα(G) = Tr Tα(G) =
∑

i

Tαii (G) (2.6)

We show that the trace or character of a matrix is invariant under a simi-
larity transformation:

Tr T ′ =
∑

i

∑

jk

S−1
ij TjkSki

=
∑

jk

(
∑

i

SkiS
−1
ij )Tjk

=
∑

jk

δkjTjk

= Tr T

The characters of a representation α is a set of h numbers {χα(G)}. It
will be shown later that if the representation is irreducible, its characters
are unique.

Theorem 5:
If elements A and B of a group belong to the same class, then the char-
acters of their representations are the same.

Proof:
Since A and B belong to the same class, there is an element C such that
A = C−1BC. Consequently,

Tr T (A) = Tr [T (C−1) T (B) T (C)]
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= Tr [T (C) T (C−1) T (B)]

= Tr [T (E) T (B)]

= Tr T (B)

Theorem 6: First Orthogonality Relation

∑

G

χα(G)∗χβ(G) =
∑

k

χα(Ck)
∗χβ(Ck)Nk = hδαβ (2.7)

Ck labels a class with Nk elements.

Proof:
Setting i = j and k = l in Eqn. ( 2.5) (Orthogonality Theorem) and
summing over i and l we have

∑

G

χα(G)∗χβ(G) = (h/lα)δαβ
∑

il

δilδil

∑

k

χα(Ck)
∗χβ(Ck)Nk = hδαβ

Eqn. ( 2.7) has the form of a weighted dot product with weight Nk in a
space with dimension equal to the number of classes of the group. χα(Ck)
is the k’th component of vector α. It follows that the number of irreducible
representations must be less than or equal to the number of classes.

2.8 The Regular Representation

We prove the following theorem:
Theorem 7:

∑
α

l2α = h (2.8)

Proof:
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A proof of this theorem is provided by considering the so called regular
representation. The regular representation is formed in the following way.
We write the multiplication table as follows:

e α β γ . . .
e e
α−1 e
β−1 e
γ−1 e

We form the regular representation of an element a by writing 1 wher-
ever the element a occurs in the table and zero otherwise. Let the group
elements be ai, i = 1, 2, . . . , h, then the regular representation is given by

Tjk(ai) = 1 if a−1
j ak = ai

= 0 otherwise

It is clear from the definition that the representation is faithful. To show
that it is really a representation, we have to prove that

∑

k

Tjk(ai)Tkl(am) = Tjl(ap)

if and only if aiam = ap. By definition, Tjk(ai) 6= 0 only when k is such that
ak = ajai and similarly Tkl(am) 6= 0 only when k is such that ak = ala

−1
m .

Therefore
∑
k Tjk(ai)Tkl(am) = 1 if and only if ak = ajai = ala

−1
m and

zero otherwise. However, ajai = ala
−1
m implies a−1

j al = aiam = ap.
The character is given by

χ(ai) =
h∑

j=1

Tjj(ai) = h if ai = e

= 0 otherwise

This is clear by inspection of the multiplication table. We can now prove
Theorem 7 by writing the character of the regular representation as a sum
over characters of the irreducible representations:

χ(ai) =
∑
α

mαχ
α(ai)
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From the orthogonality relation we have

mα =
1

h

∑

i

χα∗(ai)χ(ai)

Since χα(e) = lα, χ(e) = h, and χ(ai 6= e) = 0 it follows that mα =
lα. Each irreducible representation occurs in the regular representation a
number of times equal to the dimension of the irreducible representation.
On the other hand, h =

∑
αmαlα so that

h =
∑
α

l2α

This result together with the orthogonality theorem show that there are
exactly h orthogonal vectors T αij .

Theorem 8: Second Orthogonality Relation

∑
α

χα(Ck)
∗χα(Cl) = (h/Nk)δkl (2.9)

Proof:
We recall that the matrix representation T αij can be regarded as a set of or-
thogonal vectors in the h- dimensional space of the group elements. T αij(G)
is the component of the vector Tαij along the ”G-axis”. Tαij themselves can
be regarded as a basis in the space of the group elements since the number
of α, i, j is precisely h. Any vector in this space can therefore be expanded
in T αij :

χ =
∑

αij

cαijT
α
ij

We sum the components of χ along G-axes which belong to a given class
Ck,

χ(Ck) =
∑

G∈Ck
χ(G)

=
∑

G∈Ck

∑

αij

cαijT
α
ij(G)

=
1

h

∑

G1

∑

G∈Ck

∑

αij

cαijT
α
ij(G

−1
1 GG1)
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=
1

h

∑

G1

∑

G∈Ck

∑

αij

∑

kl

cαijT
α
ik(G

−1
1 )Tαkl(G)T αlj (G1)

=
∑

G∈Ck

∑

αij

∑

kl

cαijδijδklT
α
kl(G)/lα

=
∑

G∈Ck

∑

αi

cαiiχ
α(G)/lα

=
∑
α

aαχ
α(Ck)

where aα = (Nk/lα)
∑
i cαii. The third step uses the fact that G−1

1 CkG1 =
Ck for every G1 in the group, the fifth step uses the orthogonality theorem,
and the last step uses the fact that the characters of elements belonging
to the same class are identical. Thus the set of vectors {χ(Ck)} are lin-
early independent because the group elements can be divided uniquely and
completely into distinct classes.

Multiplying χ(Ck) by χβ
∗
(Ck)Nk and summing over the classes k yields

∑

k

χ(Ck)χ
β∗(Ck)Nk =

∑
α

aα
∑

k

χα(Ck)χ
β∗(Ck)Nk

=
∑
α

aαhδαβ

= haβ

Consequently,

χ(Cl) =
∑

β

aβχ
β(Cl)

= (1/h)
∑

β

∑

k

χ(Ck)χ
β∗(Ck)Nkχ

β(Cl)

0 =
∑

k

χ(Ck)


(Nk/h)

∑

β

χβ
∗
(Ck)χ

β(Cl)− δkl



This is true for an arbitrary χ(Ck) so that the quantity in the square bracket
must vanish which proves the theorem.

Eqn. ( 2.9) has the form of a dot product in a space with dimen-
sion equal to the number of irreducible representations. It follows that the
number of classes must be less than or equal to the number of irreducible
representations. On the other hand by Theorem 6 the number of irreducible
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representations must be less than or equal to the number of classes. Thus
we conclude the following corollary:

The number of irreducible representations is equal to the number of
classes.

Theorem 6 and 8 imply that the irreducible representations are uniquely
characterised by their characters and consequently two distinct irreducible
representations cannot have the same set of characters.

2.9 The Character Table

The character table is a square matrix with dimension equal to the number
of classes or irreducible representations:

Qαk = χα(Ck)

It has the form

C1 = CE N2C2 N3C3 . . .
T 1 1 1 1
T 2 l2 . . . . . .
T 3 l3 . . . . . .

The row is labelled by the irreducible representations and the column by
the classes.

2.10 Properties of the Character Table

The properties listed below are useful for constructing the character table.

1. The number of irreducible representations is equal to the number of
classes.

2. The first column contains the dimension of each representation and
the sum of its square is the total number of elements in the group
(Theorem 7):

∑
α l

2
α = h.
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3. As a convention, the first row is the identity or unit representation
consisting of 1.

4. Each row or column can be regarded as a vector. In this sense:

(a) The rows are orthogonal with weighting factor Nk (Theorem 6)
and normalised to h.

(b) The columns are orthogonal and normalised to h/Nk (Theorem
8).

5. If the character table of a factor group is known, then due to homo-
morphism, the character of an element aS in the factor group may
be assigned to the classes which are contained in aS. We recall that
if a group has an invariant subgroup S, then we can form a group
S, aS, bS, . . . where a is not in S, b is not in S and aS etc. This
group is a called a factor group with S as the unit element and it
is homomorphic with the group itself. An invariant subgroup means
that x−1Sx = S for every element x in the group and by Theorem
9 discussed in the next section, S must consist wholly of classes.
The homomorphism between the factor group and the group itself
means that if T (aS) is a matrix representation of the element aS of
the factor group then the same matrix may be used to represent all
elements in the coset aS. Thus, the characters of the classes in aS
is just the same as the character of T (aS).

The above five rules are often sufficient to construct the character
table but the following rule, which is described in the next section,
can be of help.

6. The characters of the α representation are related by

Niχ
α(Ci)Njχ

α(Cj) = lα
∑

k

mijkNkχ
α(Ck) (2.10)

where mijk is the coefficients of class multiplication, CiCj =∑
kmijkCk.
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2.11 Class Multiplication

Let C be a collection of classes. From the definition of a class we have

x−1Cx = C

for every element x in the group. This is evident from the fact that all
elements in a class are conjugate to one another and if two elements a and
b are different then x−1ax 6= x−1bx. Moreover, an element cannot belong
to more than one class. Thus the elements on the right hand side must be
identical to the elements in C.

Theorem 9:
A set of elements C obeying x−1Cx = C for all x in the group must be
composed wholly of classes.
Proof:
Suppose R is a set of elements in C which do not form a class. But x−1Rx
must be equal to R itself since (C−R) form classes and by definition they
will never be conjugate to elements in R. Thus R must be a class.

We now consider a product of two classes and here we do count all re-
sulting elements even when some are the same.

CiCj = x−1Cixx
−1Cjx

= x−1CiCjx

By Theorem 9, it follows that CiCj must consist wholly of classes. There-
fore it must be possible to write

CiCj =
∑

k

mijkCk (2.11)

where mijk are integers telling how often the class Ck appears in the prod-
uct CiCj.

Let us consider the class multiplication in terms of matrix representa-
tions. If we let S(Ci) be the sum of matrices of all elements in the class
Ci and T (x) be a matrix representation of the element x then we have
T−1(x)S(Ci)T (x) = S(Ci) or S(Ci)T (x) = T (x)S(Ci). If the representa-
tion T is irreducible, then it follows from Schur’s Lemma that S(Ci) = ciI.
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Thus
cicj =

∑

k

mijkck

Taking the trace of S(Ci) and assuming we are in the irreducible represen-
tation α we get

Tr S(Ci) = Tr ciI = cilα

On the other hand,
Tr S(Ci) = Niχ

α(Ci)

Therefore
ci = Niχ

α(Ci)/lα

and Eq. ( 2.10) follows.

2.12 Direct Product Groups

If a group is a direct product of two groups, then the irreducible represen-
tations and the character table of the product group can be worked out
easily from those of the two individual groups with the help of the following
theorem.

Theorem 10:
If G = G1 ⊗G2 then Tα⊗β = T α1 ⊗ T β2 is an irreducible representation of
G. Moreover, for all Tα1 and T β2 these are all possible irreducible represen-
tations of the product group.
Proof:
We first show that T is a representation of G. Let a1, a2, . . . and b1, b2, . . .
be the elements of G1 and G2 respectively and let cij = aibj be the
elements of the direct product group G. Suppose cijckl = cmn which
implies that aibjakbl = ambn or aiakbjbl = ambn since the elements of
G1 and G2 commute. This means that aiak = am and bjbl = bn or
T α(ai)T

α(ak) = T α(am) and T β(bj)T
β(bl) = T β(bn). Writing the last

two matrix equations in component form, multiplying them and using the
definition of direct product yield the required result.

Let M be a matrix which commutes with every T α⊗β. M may be
written in the form M = M1 ⊗ M2 where M1 and M2 have the same
dimensions as T α1 and T β2 respectively. The commutivity of M with T α⊗β
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implies the commutivity of M1 with T α1 and M2 with T β2 . By Schur’s
lemma, M1 = k1I1 and M2 = k2I2 and hence M = k1k2I and no non-
constant matrix M exists so that by Schur’s lemma Tα⊗β is irreducible.

To show the last part of the theorem, we recall that
∑
α l

2
1α = h1

and
∑
β l

2
2β = h2. Let lαβ = lα1 l

β
2 be the dimension of the irreducible

representation T α⊗β. We have
∑

αβ

l2αβ =
∑
α

l21α
∑

β

l22β = h1h2

But h1h2 is the order of the direct product group and therefore there are
no more possible irreducible representations other than T α⊗β for all T α1 and
T β2 .

2.13 Examples

1. We construct the character table of the permutation group of three
objects which we have considered previously. There are three classes
C1 = e, C2 = (α, β), and C3 = (γ, µ, ν) and therefore by rule
1 there are three irreducible representations. Rule 2 tells us that
l21 + l22 + l23 = 6. There is always an identity representation so we
may take l1 = 1. Then l2 = 1 and l3 = 2 are the only possible
solution and the character table must look like as follows:

C1 2C2 3C3

T 1 1 1 1
T 2 1 a b
T 3 2 c d

To determine a, b, c, and d we need to know one of them and
we can find the others by orthogonality (rule 4). The subgroup
S = (e, α, β) = C1 + C2 is an invariant subgroup and the corre-
sponding factor group has the multiplication table

S γS
S S γS
γS γS S
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where γS = µS = νS = (γ, µ, ν) = C3. This is a group of two
elements and there are evidently two classes, the first class consists
of the unit element S and the second class consists of the element
γS. The number of irreducible representations is two and both must
have dimension one, by rule 2. The irreducible representations of
the factor group must be (1, 1) and (1,−1). Then from rule 5 we
may assign a = 1 and b = −1 (a = 1 and b = 1 gives the iden-
tity representation). Note that we have taken a and b and not c
and d because the irreducible representations of the factor group are
one dimensional and T 2 is also a one dimensional representation.
The other two characters c and d can be easily obtained from the
orthogonality between columns.

1 · 1 + 1 · a+ 2 · c = 0→ c = −1

1 · 1 + 1 · b+ 2 · d = 0→ d = 0

Finally we have

C1 2C2 3C3

T 1 1 1 1
T 2 1 1 −1
T 3 2 −1 0

2. Abelian groups: Every element in an Abelian group forms a class by
itself. Therefore the number of irreducible representations is simply
equal to the number of elements in the group. Moreover, rule 2
implies that all irreducible representations have dimension one. The
consequences are

(a) Unitarity of representations implies that the numbers represent-
ing an Abelian group have modulus one.
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(b) If the number X represents an element x then X∗ represents
x−1.

(c) The character table serves also as a representation table.

As an example we consider a non-cyclic group of fourth order with
the following multiplication table

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

a2 = b2 = c2 = e so a, b, and c are represented either by ±1.
If a is represented by 1 then b = c = ±1 because bc = a. If a = −1
then either b = 1 and c = −1 or b = −1 and c = 1. Thus we have

e a b c
T 1 1 1 1 1
T 2 1 1 −1 −1
T 3 1 −1 1 −1
T 4 1 −1 −1 1

3. Cyclic groups: These are Abelian groups which can be generated by
a single element: G = (a, a2, . . . , ah = e). If a is represented by a
number Ak then a2 is represented by A2

k etc. and Ahk = 1 since e
is always represented by 1. Thus, Ak must be one of the h roots of



2.13. EXAMPLES 31

unity, i.e. Ak = exp(i2πk/h) and the character table is given by

e a a2 . . . ah−1

T 1 1 1 1 . . . 1

T 2 1 A1 A2
1 . . . Ah−1

1

T 3 1 A2 A2
2 . . . Ah−1

2

. . . . . . . .

. . . . . . . .

T h 1 Ah−1 A2
h−1 . . . Ah−1

h−1
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Chapter 3

Group Theory in Quantum
Mechanics

3.1 Linear Vector Space

A set {r1, r2, . . .} is said to form a linear vector space L if ri + rj is
another member in the set for every i, j and cri is also another member
in the set where c is a complex constant. The quantities {r1, r2, . . .} are
called vectors and there are an infinite number of them.

A set of vectors {v1,v2, . . . ,vp} is said to be linearly independent if
none of them can be expressed as a linear combination of the others. If a
set of coefficients {ck} can be found such that

p∑

k=1

ckvk = 0

then the vectors are said to be linearly dependent. The largest number of
vectors in L which form a linearly independent set is called the dimension
of L. This is the same as the smallest number of vectors needed to describe
every vector in L and these vectors are said to form a basis. We denote
the dimension of L by s and the basis vectors by {e1, e2, . . . , es} so that
any vector v may be written as

v =
s∑

i=1

viei

33
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In order to determine the coefficients vi from a given vector v we in-
troduce the concept of scalar or dot product between two vectors v1 and
v2 which we denote by (v1,v2). The particular definition of the scalar
product is arbitrary but it must satisfy the following general conditions:

1. (v1,v2) is a complex number

2. (v1,v2) = (v2,v1)∗

3. (v1, cv2) = c(v1,v2)→ (cv1,v2) = (v2, cv1)∗ = c∗(v1,v2)

4. (v1 + v2,v3) = (v1,v3) + (v2,v3)

5. (v1,v1) ≥ 0. It is only zero when v1 = 0.

Examples:

1. Vectors in 3-dimensional space. The dot product is defined as
(v1,v2) = v1v2cosθ where v1 and v2 are the lengths of the vec-
tors and θ is the angle between the two vectors.

2. Function spaces. The dot product is defined as (ψi, ψj) =∫
d3r w(r)ψ∗i (r)ψj(r) where w is a weight function which is usu-

ally real and positive definite so that the last condition is satisfied.
We can also define orthonormal basis functions {φi} such that any
function can be expanded in this basis: ψ =

∑∞
i=1 ciφi The linear

space spanned by this basis is called the Hilbert space.

We define an operator T̂ by

T̂v = v′

where v is an arbitrary vector or function which is carried into another
vector or function v′. Both v and v′ are in L. The operator is called linear
if

T̂ (v1 + v2) = T̂v1 + T̂v2

T̂ cv = cT̂v



3.2. SYMMETRY TRANSFORMATIONS 35

We will consider only linear operators.

Since any vector in L can be expanded in the basis vectors, it is only
necessary to study the effects of the operator on the basis vectors.

T̂ej =
∑

i

eiTij

The matrix Tij is said to form a representation for the operator T̂ in the
linear vector space L.

It is usually convenient to choose an orthonormal basis, by this we
mean (φi, φj) = δij. This can always be done by the Gramm-Schmidt
orthogonalisation procedure. We illustrate the method for three vectors.
The generalisation to an arbitrary number of vectors is straightforward. Let
φ1, φ2, φ3 be three linearly independent functions which are not necessarily

orthogonal nor normalised. Let ψ1 = φ1/
√

(φ1, φ1) and construct ψ̃2 =

φ2 − ψ1(ψ1, φ2) which is orthogonal to ψ1. We normalise ψ̃2 to get ψ2 =

ψ̃2/
√

(ψ̃2, ψ̃2) and construct ψ̃3 = φ3 − ψ2(ψ2, φ3) − ψ1(ψ1, φ3) which
is orthogonal to both ψ1 and ψ2 and which is then normalised to give

ψ3 = ψ̃3/
√
ψ̃3, ψ̃3) In this way we have constructed an orthonormal set of

functions and we can see that for a general case we have

ψ̃n = φn −
n−1∑

i=1

ψi(ψi, φn)

3.2 Symmetry Transformations

A symmetry transformation G with respect to a given function f(x, y, z)
is a real linear coordinate transformation that preserves the length (real
unitary transformation)

r′ = Gr→ r′i =
∑

j

Gijrj, ri = x, y, z

such that the function calculated with the new variables ri by the above
substitution of coordinates is the same as the function calculated with the
old variables: f(x′, y′, z′) = f ′(x, y, z) = f(x, y, z) → f(Gr) = f(r). In
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other words, the function looks the same in the old and the new coordinate
system. This also implies that

f(Gr) = f(r) = f(G−1r)

because f(r′) = f(r) = f(G−1r′) and r′ is just a dummy variable.
A symmetry operator T̂ (G) associated with a symmetry transformation

G is defined by
T̂ (G)f(r) = f(G−1r)

It is important to note that the operator acts upon the coordinates r, and
not upon the argument of f . Thus we mean that

T̂ (G)f(Ar) = f(AG−1r) 6= f(G−1Ar)

We also have G−1 instead of G in our definition. This is a natural choice
because two successive operations T̂ (G1) and T̂ (G2) on a function f(r)
correspond to the same order of coordinate transformation:

T̂ (G2)T̂ (G1)f(r) = T̂ (G2)f(G−1
1 r) = f(G−1

1 G−1
2 r) = f([G2G1]−1r)

Theorem 1:
If {G} is a set of all symmetry transformations of a function, then the
associated symmetry operators {T̂ (G)} form a group.

Proof:
The set {G} evidently form a group because if G is a symmetry transfor-
mation, then so is G−1 as discussed above. A succession of two symmetry
transformations is itself a symmetry transformation and the identity trans-
formation is obviously a symmetry transformation. From the definition, we
have

T̂ (G1)T̂ (G2)f(r) = T̂ (G1)f(G−1
2 r)

= f(G−1
2 G−1

1 r)

= f([G1G2]−1r)

= T̂ (G1G2)f(r)

Hence T̂ (G1)T̂ (G2) = T̂ (G1G2) and the symmetry operators form a group.
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3.3 Invariant Subspace and Its Genera-

tion

A set of functions or vectors {φi} is said to span an invariant subspace VS
under a given set of symmetry operators {T̂ (G)} if T̂ (G)φi is also in VS
for all G and i.

An invariant subspace can be generated from an arbitrary function f and
a set of symmetry operators {T̂ (G)} by applying each of the operators on
f . The set of functions {T̂ (G)f} form an invariant subspace under {T̂ (G)}
because T̂ (G′)[T̂ (G)f ] = T̂ (G′G)f , which must lie in the subspace since
T̂ (G′G) is just another member of {T̂ (G)}. We note that the number of
functions that span the subspace is not necessarily equal to the number of
G. Some of the functions may be the same or can be expressed as linear
combinations of the others. The largest number of linearly independent
functions in VS is called the dimension of the subspace.

It may happen that we can construct a function f ′ in VS such that the
invariant subspace {T̂ (G)f ′} has a smaller dimension than that of VS. In
this case the subspace VS is said to be reducible. When such a function
cannot be found than VS is said to be irreducible.

3.4 Basis Functions for a Representation

Let {φi} be a set of orthonormal functions that span an invariant subspace
VS. Then T̂ (G)φi(r) = φi(G

−1r) is in VS by definition and it can therefore
be expanded as a linear combination of {φi}:

T̂ (G)φi =
∑

j

φjTji(G) (3.1)

If the basis functions are orthonormal, then T (G) is unitary because

(T̂ (G)φi, T̂ (G)φj) = δij = (
∑

k

φkTki(G),
∑

l

φlTlj(G))

=
∑

kl

T ∗ki(G)Tlj(G)(φk, φl)

=
∑

k

T †ik(G)Tkj(G)
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Theorem 2:
The matrices {T (G)} form a representation for {T̂ (G)}

Proof:

T̂ (G1)T̂ (G2)φi =
∑

j

T̂ (G1)φjTji(G2)

T̂ (G1G2)φi =
∑

jk

φkTkj(G1)Tji(G2)

∑

k

φkTki(G1G2) =
∑

k

φkTkj(G1)Tji(G2)

Thus T (G1)T (G2) = T (G1G2). The functions {φi} are said to form a ba-
sis for a representation, which may be reducible. Evidently, if the subspace
is irreducible under {T̂ (G)}, then the representation is also irreducible.
This simply follows from the fact that one always generates the entire sub-
space starting from any function in the subspace. If the representation
were reducible, then it would be possible to start from a function that does
not generate the entire subspace, in which case the subspace is reducible.
We now see the relevance of matrix representation theory studied in the
previous chapter. Since the theorems were developed for arbitrary matrices,
they are also applicable here.

Theorem 3:
A change of basis vectors ψj =

∑
i φiSij corresponds to a similarity trans-

formation of the original representation, which is an equivalent representa-
tion. S is assumed to be unitary so that (ψi, ψj) = δij.

Proof:

T̂ (G)φi =
∑

j

φjTji(G)

T̂ (G)
∑

j

ψjS
−1
ji =

∑

j

∑

k

ψkS
−1
kj Tji(G)
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Multiplying both sides by Sim and summing over i yields

T̂ (G)ψm =
∑

k

ψkT
′
km(G)

where T ′km(G) =
∑
ji S

−1
kj Tji(G)Sim(G) or T ′ = S−1TS which is a simi-

larity transformation. It is clear that the reverse is also true, i.e. a similarity
transformation of the representation with a unitary matrix S corresponds
to a unitary transformation of the basis vectors.

3.5 Projection Operators

It is possible to construct a projection operator P̂ β such that given an arbi-
trary function ψ, P̂ βψ is a component of ψ in the irreducible subspace β,
i.e. P̂ βψ transforms according to the irreducible representation β. This is a
very useful tool. In the following, we construct these projection operators.

Suppose {ψαi } span an irreducible subspace transforming according to
the irreducible representation α of {T̂ (G)}. That is

T̂ (G)ψαi =
∑

j

ψαj T
α
ji(G)

Multiplying by T β∗kl (G) and summing over G yields

∑

G

T β∗kl (G)T̂ (G)ψαi =
∑

G

∑

j

ψαj T
α
ji(G)T β∗kl (G)

Using the Orthogonality Theorem on the right side, we get

∑

G

T β∗kl (G)T̂ (G)ψαi =
∑

j

ψαj (h/lβ)δjkδilδαβ

= (h/lβ)δilδαβψ
α
k

We define
P̂ β
kl ≡ (lβ/h)

∑

G

T β
∗
kl(G)T̂ (G)

so that
P̂ β
klψ

α
i = δilδαβψ

β
k → P̂α

kiψ
α
i = ψαk (3.2)
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Starting from a given function that belongs to the ith row of a given
irreducible representation α, the projection operator can be used to gener-
ate the other ”partner functions” corresponding to the other rows. These
functions form a basis for the irreducible representation α.

Moreover, we can also define

P̂ β ≡ ∑

i

P̂ β
ii

≡ (lβ/h)
∑

G

χβ∗(G)T̂ (G)

so that
P̂ βψαi = δβαψ

α
i (3.3)

The projection operators allow us to decompose the space, in which the
symmetry operators are defined, into irreducible subspaces. Any function
ψ can therefore be written as follows

ψ =
∑
α

∑

i

ψαi (3.4)

where ψαi belongs to the ith row of the irreducible representation α. We
note also that if φαi and ψαi belong to the ith row of the irreducible repre-
sentation α, so does any linear combination aφαi + bψαi .

Suppose that a given representation T is reducible. Then there is a uni-
tary matrix S such that T ′ = S−1TS =

∑
α⊕mαT

α has the block form
and each block cannot be reduced any further. α labels the irreducible rep-
resentation and mα tells us how many times the irreducible representation
α appears in the reduction. We note that when mα > 1 the irreducible
representations T α are assumed to be the same. This can always be done
by means of similarity transformations in each subspace which transforms
according to the same irreducible representation α. The new basis vectors
according to Theorem 3 are given by ψj =

∑
i φiSij and they may be la-

belled according to the irreducible subspaces to which they belong. Any
vector in VS can therefore be expanded as follows:

v =
∑

α,t,i

ψαti c
αt
i

=
∑

α,i

vαi (3.5)
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where t labels the different possible subspaces transforming according to
the same irreducible representation α, which is necessary when mα > 1,
and i labels the basis functions in the subspace α, t. We have also defined
vαi =

∑
t ψ

αt
i c

αt
i . However, T̂ (G)vαi is not necessarily equal to

∑
j v

α
j Tji(G)

unless there is only one t.

3.6 Orthogonality of Basis Functions

Theorem 4:
Two vectors belonging to two inequivalent irreducible representations must
be orthogonal. If they transform according to the same irreducible repre-
sentation, they are still orthogonal if they belong to different rows.

Proof:
Let φαi and ψβj belong to the irreducible representations Tα and T β respec-
tively. Then

T̂ (G)φαi =
∑

k

φαkT
α
ki(G)

T̂ (G)ψβj =
∑

l

ψβl T
β
lj(G)

Recalling that T is or may always be chosen to be unitary, we have

(φαi , ψ
β
j ) = (T̂ (G)φαi , T̂ (G)ψβj )

=
∑

kl

T α∗ki (G)T βlj(G)(φαk , ψ
β
l )

= (1/h)
∑

G

∑

kl

Tα∗ki (G)T βlj(G)(φαk , φ
β
l )

= (1/lα)δαβδij
∑

k

(φαk , ψ
β
k )

3.7 Examples

As an example, we consider the group D3 which is the group of permu-
tations of three objects. The elements are e = unit element, c1, c2 =
anticlockwise rotations about the z−axis by 2π/3 and 4π/3 respectively,
and d1, d2, d3 = rotations by π about axes lebelled 1, 2, 3 in Figure 3.1.
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The classes are Ce = e, Cc = (c1, c2), and Cd = (d1, d2, d3). We choose
a set of basis vectors or functions in order to form a representation for the
group elements. The choice is arbitrary.

1. The first obvious choice is the three Cartesian unit vectors ex, ey, ez
as shown in the figure. Let us see how they transform under the
group operations.

ex ey ez
T̂ (e) ex ey ez

T̂ (c1) −1
2
ex +

√
3

2
ey −

√
3

2
ex − 1

2
ey ez

T̂ (c2) −1
2
ex −

√
3

2
ey

√
3

2
ex − 1

2
ey ez

T̂ (d1) −ex ey −ez

T̂ (d2) 1
2
ex +

√
3

2
ey

√
3

2
ex − 1

2
ey −ez

T̂ (d3) 1
2
ex −

√
3

2
ey −

√
3

2
ex − 1

2
ey −ez

We see that applying the group operations on ex or ey generate
an invariant subspace (ex, ey) whereas ez forms an invariant sub-
space by itself. The set of Cartesian unit vectors (ex, ey, ez) do form
a basis for the representation of the group. The matrices can be
calculated by using the definition Tij(G) = (φi, T̂ (G)φj):

T (e) =




1 0 0
0 1 0
0 0 1


 T (c1) =



−1

2
−
√

3
2

0√
3

2
−1

2
0

0 0 1




T (c2) =



−1

2

√
3

2
0

−
√

3
2
−1

2
0

0 0 1


 T (d1) =



−1 0 0
0 1 0
0 0 −1




T (d2) =




1
2

√
3

2
0√

3
2
−1

2
0

0 0 −1


 T (d3) =




1
2

−
√

3
2

0

−
√

3
2

−1
2

0
0 0 −1




The characters are χ(Ce) = 3, χ(Cc) = 0, and χ(Cd) = −1. As can
be seen, the 3×3 representation is reducible into a 2×2 and a 1×1



3.7. EXAMPLES 43

representations. The 1×1 representation is obviously irreducible, but
it may be possible to further reduce the 2 × 2 representation. We
recall that the character of a given representation can be written as
χ =

∑
αmαχ

α and by using the first orthonormality relation between
characters the coefficients mα can be calculated as follows:

mα =
1

h

∑

k

Nkχ
α∗(Ck)χ(Ck)

For convenience, we reproduce the character table of the group D3.

Ce 2Cc 3Cd
T 1 1 1 1
T 2 1 1 −1
T 3 2 −1 0

Thus

m1 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · (−1)] = 0

m2 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · (−1) · (−1) = 1

m3 =
1

6
[1 · 2 · 3 + 2 · (−1) · 0 + 3 · 0 · (−1) = 1

Hence the representation breaks up into T = T 2 ⊕ T 3 and therefore
(ex, ey) do form an irreducible subspace for the representation T 3.
We could have arrived at this conclusion simply by calculating the
characters of the 2×2 representation which are χ(Ce) = 2, χ(Cc) =
−1, and χ(Cd) = 0 and which agree with the characters of the T 3

representation.

2. As a second example, we consider the same group but we choose a
basis which consists of functions rather than the Cartesian vectors.
We can take an arbitrary function, say x2, and generate an invariant
subspace from it. We construct an orthonormal basis that spans this
subspace and we form the representation for the group. We then use
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the projection operator method to figure out which functions belong
to a given irreducible subspace.

What we need to know is how x transforms under the group op-
erations. We have defined T̂ (G)f(r) = f(G−1r), i.e. T̂ (G)x =
T̂ (G)(ex · r) = (ex ·G−1r) = (Gex · r). Thus x, y and z transform
like the Cartesian vectors ex, ey, and ez and we have

T̂ (e)x2 = x2

T̂ (c1)x2 = (−1

2
x+

√
3

2
y)2 =

1

4
x2 +

3

4
y2 −

√
3

2
xy

T̂ (c2)x2 = (−1

2
x−
√

3

2
y)2 =

1

4
x2 +

3

4
y2 +

√
3

2
xy

T̂ (d1)x2 = (−x)2 = x2

T̂ (d2)x2 = (
1

2
x+

√
3

2
y)2 =

1

4
x2 +

3

4
y2 +

√
3

2
xy

T̂ (d3)x2 = (
1

2
x−
√

3

2
y)2 =

1

4
x2 +

3

4
y2 −

√
3

2
xy

These six functions form an invariant subspace for D3 but all of them
can be written as linear combinations of only three distinct functions
χ1 = x2, χ2 = y2, and χ3 = xy. Evidently none of these three
functions can be written as a linear combination of the other two so
that they are linearly independent and form a basis for the invariant
subspace, although they are neither orthogonal nor normalised.

We now use the Gramm-Schmidt orthogonalisation procedure to con-
struct a set of orthonormal basis needed to construct a unitary repre-
sentation for the group. We can start with any of the three functions
or any linear combination of them. Let us start with χ1 = x2 which
we normalise inside a unit sphere so that

|A|2(χ1, χ1) =
∫ 1

0
dr r2

∫ π

0
dθsin θ

∫ 2π

0
dφ χ∗1χ1 = 1

which gives A =
√

35/4π. The normalised function is then

φ1 = Ax2
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The second function is constructed by using φ̃2 = χ2 − φ1(φ1, χ2)
which yields after normalisation

φ2 = A
1

2
√

2
(3y2 − x2)

The function xy is already orthogonal to both x2 and y2 due to
antysymmetry so that the third orthonormalised function is

φ3 = A
√

3xy

To construct the representation matrices, we need to know how these
basis functions transform into one another under the group opera-
tions.

φ1 φ2 φ3

T̂ (e) φ1 φ2 φ3

T̂ (c1) 1
2
φ1 + 1√

2
φ2 − 1

2
φ3

1√
2
(φ1 + φ3) 1

2
φ1 − 1√

2
φ2 − 1

2
φ3

T̂ (c2) 1
2
φ1 + 1√

2
φ2 + 1

2
φ3

1√
2
(φ1 − φ3) −1

2
φ1 + 1√

2
φ2 − 1

2
φ3

T̂ (d1) φ1 φ2 −φ3

T̂ (d2) 1
2
φ1 + 1√

2
φ2 + 1

2
φ3

1√
2
(φ1 − φ3) 1

2
φ1 − 1√

2
φ2 + 1

2
φ3

T̂ (d3) 1
2
φ1 + 1√

2
φ2 − 1

2
φ3

1√
2
(φ1 + φ3) −1

2
φ1 + 1√

2
φ2 + 1

2
φ3

The matrix representations can be easily obtained and these are

T (e) =




1 0 0
0 1 0
0 0 1


 T (c1) =




1
2

1√
2

1
2

1√
2

0 − 1√
2

−1
2

1√
2
−1

2




T (c2) =




1
2

1√
2
−1

2
1√
2

0 1√
2

1
2
− 1√

2
−1

2


 T (d1) =




1 0 0
0 1 0
0 0 −1




T (d2) =




1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2
− 1√

2
1
2


 T (d3) =




1
2

1√
2
−1

2
1√
2

0 1√
2

−1
2

1√
2

1
2
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Unlike the previous example, these matrices are not in block form but
we know that they are reducible because there is no three dimensional
representation of D3. Let us figure out which irreducible representations
are contained in these matrices by using the same formula as in the pre-
vious example. The reducible characters are χ(Ce) = 3, χ(Cc) = 0, and
χ(Cd) = 1. We get

m1 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1] = 1

m2 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · (−1) · 1] = 0

m3 =
1

6
[1 · 2 · 3 + 2 · (−1) · 0 + 3 · 0 · 1] = 1

Hence the representation breaks up into T = T 1 ⊕ T 3.
Since the representation contains an identity representation, it must be

possible to construct a linear combination of φ1, φ2, and φ3 such that it
is invariant under the group operations. We do this in a systematic way
using the projection operator method. The projection operator is given by

P̂α =
lα
h

∑

G

χα∗(G)T̂ (G)

which when applied to an arbitrary function gives the component of the
function in the irreducible subspace α. Let us apply P̂ 1 to φ1, φ2, and φ3:

P̂ 1φ1 =
1

6

[
φ1 + (

1

2
φ1 +

1√
2
φ2 − 1

2
φ3) + (

1

2
φ1 +

1√
2
φ2 +

1

2
φ3)

+φ1 + (
1

2
φ1 +

1√
2
φ2 +

1

2
φ3) + (

1

2
φ1 +

1√
2
φ2 − 1

2
φ3)

]

=

√
2

3
(
√

2φ1 + φ2)

P̂ 1φ2 =
1

6

[
φ2 + (

1√
2

(φ1 + φ3)) + (
1√
2

(φ1 − φ3))

+φ2 + (
1√
2

(φ1 − φ3)) + (
1√
2

(φ1 + φ3))

]
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=
1

3
(
√

2φ1 + φ2)

P̂ 1φ3 = 0

The linear combination (
√

2φ1 +φ2)/
√

3 transforms according to the iden-
tity representation. The component of φ1 in the third irreducible subspace
is given by

P̂ 3φ1 =
2

6

[
2φ1 − (

1

2
φ1 +

1√
2
φ2 − 1

2
φ3)− (

1

2
φ1 +

1√
2
φ2 +

1

2
φ3)

]

=
1

3
(φ1 −

√
2φ2)

Thus we may choose a new basis

ψ1 =
1√
3

(
√

2φ1 + φ2)

ψ2 =
1√
3

(φ1 −
√

2φ2)

ψ3 = φ3

which brings the representation into block form with ψ1 transforming ac-
cording to the identity representation T 1 and (ψ2, ψ3) transforming accord-
ing to the irreducible representation T 3. The new basis may be written as
ψi =

∑
j φjSji where S is the unitary matrix that reduces the representa-

tion into block form which is given by

S =




√
2
3

√
1
3

0√
1
3
−
√

2
3

0
0 0 1




3.8 Relationship to Quantum Mechanics

A basic problem in quantum mechanics is finding the eigenvectors and
eigenvalues of a Hamiltonian Ĥ. A general procedure is to calculate the
Hamiltonian matrix in an arbitrary basis and diagonalise it, but in most
cases, this procedure is too difficult to carry out. Instead one tries to find
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a basis in which the off diagonal elements of H are small or zero so that
they can be neglected or treated perturbatively. It is here that the study
of the symmetry of the Hamiltonian is of great value because group theory
can tell us which matrix elements are zero and how the matrix elements
are related to one another. The results are exact and depend only on the
symmetry of the systems and not on the particular form of interactions or
potentials.

3.8.1 The Group of the Schrödinger Equation

If {G} is a set of all symmetry transformations of a Hamiltonian, Ĥ, then
according to Theorem 1 the associated symmetry operators {T̂ (G)} form
a group which is called the group of the Schrödinger equation or in short
the Schrödinger group.

Theorem 5:
Each element of the Schrödinger group commutes with the Hamiltonian.
Moreover, if ψ(r) is an eigenvector of Ĥ, then T̂ (G)ψ(r) = ψ(G−1r) is
also an eigenvector of Ĥ with the same eigenvalue.

Proof:
By definition

T̂ (G)Ĥ(r) = Ĥ(G−1r) = Ĥ(r)

Let us investigate the consequences of this symmetry by considering the
effect of T̂ (G) on Ĥψ(r) where ψ is an arbitrary function .

T̂ (G)Ĥ(r)ψ(r) = Ĥ(G−1r)ψ(G−1r)

= Ĥ(r)T̂ (G)ψ(r)[
T̂ (G)Ĥ(r)− Ĥ(r)T̂ (G)

]
ψ(r) = 0

Since ψ(r) is arbitrary, [T̂ , Ĥ] = 0. The second part of the theorem follows
directly from this result:

Ĥ(r)T̂ (G)ψ(r) = T̂ (G)Ĥ(r)ψ(r) = εT̂ (G)ψ(r)
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3.8.2 Degeneracy and Invariant Subspace

The implication of Theorem 5 is that a degenerate set of eigenfunctions
of Ĥ form an invariant subspace under the symmetry operations of the
Schrödinger group and therefore form a basis for a representation of the
group. Let {ψi} be a set of degenerate eigenfunctions with energy ε. Since
T̂ (G)ψi(r) = ψi(G

−1r) is also an eigenfunction with the same energy ε, it
must be possible to expand T̂ (G)ψi(r) as a linear combination of {ψi}:

T̂ (G)ψi =
∑

j

ψjTji(G)

The matrices {T (G)} form a representation for the Schrödinger group.

The representation is normally irreducible but if it is reducible, then
there are two possibilities:

1. There is an accidental degeneracy so that the subspace can be broken
up into two or more irreducible subspaces. A vector in one irreducible
subspace evidently cannot be brought into another irreducible sub-
space by the symmetry operators.

2. The group is a subgroup of a larger group.

In practice, accidental degeneracies my be lifted up by varying parameters
in the Hamiltonian without changing the symmetry of it. If the subspace
is irreducible, the degeneracy is termed ”normal”.

Assuming that there is no accidental degeneracy, each degenerate set
of eigenfunctions of Ĥ form a basis for an irreducible representation of
the Schrödinger group. We may label each eigenfunction by the row and
the irreducible representation to which it belongs. In this sense, the row
index and the irreducible representation provide ”quantum numbers”. The
degeneracy is simply given by the dimensionality of the irreducible repre-
sentation. Thus by knowing the symmetry of the Hamiltonian, we can tell
the degrees of degeneracy possible in any problem. It follows that these de-
generacies can only be broken by a perturbation if it has a lower symmetry
than the unperturbed Hamiltonian. Moreover, by knowing the symmetry
of the perturbation, we can also tell how the degeneracies are split.
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3.8.3 Partial Diagonalisation of Ĥ

Theorem 6:
The matrix element (φαi , Ĥψ

β
j ) is zero unless α = β and i = j.

Proof:

(φαi , Ĥψ
β
j ) = (T̂ (G)φαi , T̂ (G)Ĥψβj )

= (T̂ (G)φαi , ĤT̂ (G)ψβj )

=
∑

kl

T α∗ki(G)T βlj(G)(φαk , Ĥψ
β
l )

=
1

h

∑

G

∑

kl

Tα∗ki(G)T βlj(G)(φαk , Ĥψ
β
l )

=
1

lα

∑

kl

δklδijδαβ(φαk , Ĥψ
β
l )

=
1

lα
δαβδij

∑

k

(φαk , Ĥψ
β
k )

This result is very useful because by choosing basis functions with the
appropriate symmetry, the Hamiltonian is partially diagonalised with very
little effort. Also, (φαi , Ĥψ

β
i ) is independent of i. This is a special case of

the so called Wigner-Eckart theorem discussed later.

3.9 Irreducible Sets of Operators

We have studied the concept of irreducible subspace formed by a set of
functions which transform among themselves under the group operations.
A similar concept may be extended to operators and we define an irreducible
set of operators Ôα

i by the closure property

Ôα′
i = T̂ (G)Ôα

i T̂
−1(G) =

∑

j

Ôα
j T

α
ji(G) (3.6)

Thus the irreducible set of operators Ôα
i transform among themselves under

the irreducible representation T α. The number of operators in such a set
is equal to the dimension lα of the irreducible representation. An example
of an irreducible set of operators is given by the momentum operators px,
py, and pz under rotation.
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3.10 Direct Product Representations of a

Group

The direct product of an n × n matrix A and and m × m matrix B is
defined by

(A⊗B)ii′,jj′ = AijBi′j′ (3.7)

(A⊗B) is an (mn×mn) matrix and it is not the same as a matrix mul-
tiplication of A and B.

Theorem 7:
If T α and T β are two representations of a group, then Tα⊗β = T α⊗ T β is
also a representation of the group.

Proof:

[Tα⊗β(G1)Tα⊗β(G2)]ii′, jj′ =
∑

kk′
T α⊗βii′,kk′(G1)Tα⊗βkk′,jj′(G2)

=
∑

kk′
T αik(G1)T βi′k′(G1)Tαkj(G2)T βk′j′(G2)

= T αij(G1G2)T βi′j′(G1G2)

= T α⊗βii′,jj′(G1G2)

Theorem 8:
The character of a direct product representation Tα⊗β is the product of
the characters of Tα and T β.

Proof:

χα⊗β =
∑

ii′
Tα⊗βii′,ii′

=
∑

ii′
TαiiT

β
i′i′

= χαχβ
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Theorem 9:
If {ψαi } transform according to the representation Tα and {ψβj } transform

according to the representation T β, then {ψαi ψβj } transform according to
the direct product representation T α⊗β.

Proof:

T̂ (G)(ψαi ψ
β
j ) =

∑

k

∑

l

ψαkT
α
ki(G)ψβl T

β
lj(G)

=
∑

kl

(ψαkψ
β
l )Tα⊗βkl,ij

In general, the direct product representation is reducible even when the
two constituent representations are irreducible. There is a unitary matrix
U , independent of the group elements, which transforms Tα⊗β into a block
form: ∑

ij,i′j′
Uγmk,ijT

α⊗β
ij,i′j′U

†
ij,γ′m′k′ = δγγ′δmm′T

γ
kk′ (3.8)

The label m distinguishes blocks with the same irreducible representation.
Thus, we may write

Tα⊗β =
∑
γ

⊕mγT
γ (3.9)

γ labels the irreducible representations and the coefficients mγ, which tells
us the number of times the irreducible representation γ occurs in the de-
composition, can be calculated using the first orthogonality relation of the
characters

χα⊗β =
∑
γ

mγχ
γ

χαχβ =
∑
γ

mγχ
γ

mγ = (1/h)
∑

k

Nkχ
α(Ck)χ

β(Ck)χ
γ∗(Ck)
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3.11 Clebsch-Gordan Coefficients

Since the set of product functions ψαi ψ
β
j transform according to the prod-

uct representation Tα⊗β which is in general reducible, evidently the space
formed by the product functions are also reducible and the product func-
tions may then be projected into these irreducible subspaces:

ψαi ψ
β
j =

∑
γm

F γ
ij(m)

where F γ
ij(m) belongs to the irreducible subspace γ. The label m distin-

guishes functions with the same γ which is necessary only when mγ > 1
in the decomposition of the product representation. In other words, there
may be more than one subspace which transform according to the same
irreducible representation. F γ

ij(m) itself may be expanded in an orthogonal
basis which spans the irreducible subspace γ:

F γ
ij(m) =

∑

k

fγk (m)Cγ
k,ij(m)

and therefore
ψαi ψ

β
j =

∑
γm

∑

k

fγk (m)Cγ
k,ij(m) (3.10)

The coefficients C are called the Clebsch-Gordan coefficients and they
depend on α and β.

Apart from a possible phase factor, the Clebsch-Gordan coefficients are
actually identical to the unitary matrix U defined in the previous section. To
see this, we consider how the state Ψγ

k(m) =
∑
ij ψ

α
i ψ

β
j U
†
ij,γmk transform

under a group symmetry operation:

T̂ (G)Ψγ
k(m) =

∑

ij,i′j′
ψαi′ψ

β
j′T

α⊗β
i′j′,ijU

†
ij,γmk

=
∑

i′j′k′
ψαi′ψ

β
j′U
†
i′j′,γmk′T

γ
k′k

=
∑

k′
Ψγ
k′(m)T γk′k

We have used Eq. ( 3.8) in the second step. Thus the states Ψγ
k(m)

transform according to the irreducible representation γ. We may also write

ψαi ψ
β
j =

∑

kγm

Ψγ
k(m)Uγmk,ij (3.11)
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which shows that the Clebsch-Gordan coefficients are identical to the uni-
tary matrix U , apart from a phase factor. By convention, they are nor-
malised as follows: ∑

ij

|Cγ
ijk(m)|2 = 1 (3.12)

Since C is unitary, it satisfies the following relations
∑

ij

Cγ
k,ij(m)C∗γ

′
k′,ij(m

′) = δγγ′δmm′δkk′

∑

γkm

Cγ
k,ij(m)C∗γk,i′j′(m) = δii′δjj′

3.12 The Wigner-Eckart Theorem

In physics, we are often faced with a problem of calculating matrix elements
of an operator Ô between two states ψ and φ: (ψ, Ôφ). In practice, the
calculation of matrix elements can be very complicated and we would like
to study if group theory can help us in simplifying this problem.

First of all, from previous sections, we know that an arbitrary function
belonging to a linear space L which transforms into itself under group
operations can be projected into the different irreducible components of
the group. Consequently, we need only consider matrix elements of the
type:

(fγk , Ô
α
i f

β
j )

We study the transformation of the function ψij = Ôα
i f

β
j under a group

symmetry operation:

T̂ (G)ψij = T̂ (G)Ôα
i f

β
j

= [T̂ (G)Ôα
i T̂
−1(G)] T̂ (G)fβj

=
∑

k

Ôα
kT

α
ki(G)

∑
m

fβmT
β
mj(G)

=
∑

km

ψkmT
α⊗β
km,ij(G)

The new function ψij may then be completely expanded into its irreducible
components as in Eq. ( 3.11):

ψij =
∑

γ′k′m
Ψγ′
k′(m)Cγ′

k′,ij(m)



3.13. APPLICATIONS 55

The matrix element is then given by

(fγk , Ô
α
i f

β
j ) =

∑

γ′k′m
(fγk ,Ψ

γ′
k′(m))Cγ′

k′,ij(m)

=
∑
m

(fγk ,Ψ
γ
k(m))Cγ

k,ij(m)

The significance of the above result is that the Clebsch-Gordan coefficients
Cγ
k,ij(m) are obtained entirely from symmetry and they do not depend on

the details of the potential of the system. Information about the details
of the system is contained in the matrix elements (fγk ,Ψ

γ
k(m)) which do

not depend on i and j. In fact, it does not depend on k as shown in
section 3.6. These matrix elements are often referred to as reduced matrix
elements and they are written as

(fγk ,Ψ
γ
k(m)) = 〈fγ||Ôα||fβ〉m

emphasising the fact that the reduced matrix elements are independent of
i, j, and k. Thus we have

(fγk , Ô
α
i f

β
j ) =

∑
m

〈fγ||Ôα||fβ〉mCγ
k,ij(m) (3.13)

This is known as the Wigner-Eckart theorem which tells us that the matrix
element (fγk , Ô

α
i f

β
j ) is zero unless the product representation T α⊗β contains

the irreducible representation γ. This is a general form of selection rules.
The Clebsch-Gordan coefficients relate the matrix elements for a given α,
β, and γ but with different i, j, and k to one another.

We can see that theorem 6 follows immediately from the Wigner-Eckart
theorem because the Hamiltonian is an invariant under the group symmetry
operations, i.e. T̂ (G)ĤT̂−1(G) = Ĥ, so that Ĥ transforms according to
the identity representation.

3.13 Applications

We list a few of the common applications of group theory.

1. Selection rules: As an example we consider optical transitions in a
molecule which has a D3 symmetry. This could correspond to a
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molecule with three identical atoms at the corners of a triangle. Ac-
tually, the full symmetry is higher than D3 but as an illustration it
is sufficient to consider the D3 symmetry. Optical transitions are
governed by dipole operators x, y, and z which transform like the
three Cartesian unit vectors. The groundstate of the molecule may
be assumed to be non-degenerate and symmetric so that it trans-
forms according to the identity representation. From the previous
example, the dipole operators transform according to the represen-
tation T = T 2 ⊕ T 3 and therefore the final states can only be those
which transform according to (T 2 ⊕ T 3)⊗ T 1 = T 2 ⊕ T 3.

2. Symmetry breaking: In the above example, we know from symmetry
alone that the eigenfunctions can only be at most doubly degener-
ate. If we replace one of the atoms by a different atom so that the
symmetry becomes C2, then this degeneracy, if it exists, must split
into two non-degenerate levels because C2 is an Abelian group and
the irreducible representations are one dimensional. The actual re-
duction can be figured out straightforwardly using the orthogonality
relation between the characters. The ordering of the energy levels,
however, cannot be determined by group theory alone.

3. Variational principle: We are often interested in finding the ground-
state of a given Hamiltonian which usually cannot be solved analyti-
cally. One method of obtaining an approximate groundstate is based
on variational principle. We start with some basis functions {φi} and
approximate the true groundstate Ψ as a linear combination of these
functions.

Ψ =
∑

i

ciφi

From the variational principle, the energy expectation value < E >=
(Ψ, ĤΨ) ≥ E0, where E0 is the true groundstate energy. The co-
efficients {ci} are determined by minimising < E > subject to the
condition (Ψ,Ψ) = 1:

∂

∂c∗i
[< E > −λ(Ψ,Ψ)] =

∂

∂c∗i


∑

jk

c∗j(φj, Ĥφk)ck − λ
∑

j

c∗jcj




=
∑

k

Hikck − λci = 0
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which is just an eigenvalue problem.

From Theorem 6, it is clear that we should sort out the basis func-
tions, using the projection operator method for example, according
to the rows and irreducible representations {φαmi } where m labels
different possible subspaces transforming according to the same ir-
reducible representation α. It is only necessary to express the trial
function as follows: ψ =

∑
m c

αm
i φαmi . When m = 1, the Hamilto-

nian is already diagonal and when m > 1, we need only diagonalise
an m×m matrix instead of an l× l matrix where l =

∑
αmi 1, which

is usually much larger than m.

4. Degenerate perturbation theory: In many cases, the Hamiltonian
may be broken up into two terms Ĥ = Ĥ0 + Ĥ1 such that Ĥ1 may
be treated as a small perturbation to Ĥ0. Ĥ0 usually has a higher
symmetry than Ĥ1. A typical example of this is an atom placed in a
crystal where the crystal field symmetry is lower than the rotational
symmetry of the atom. If the eigenfunctions of Ĥ0 are degenerate, we
may use the variational principle to calculate the energy shifts. The
eigenfunction of Ĥ is approximated as a linear combination of the
degenerate eigenfunctions of Ĥ0. This leads to an eigenvalue problem
for Ĥ1 and the eigenvalues give the first order shifts. As before, we
should sort out the degenerate eigenfunctions of Ĥ0 according to the
rows and irreducible representations of the symmetry group of Ĥ1 in
order to minimise the size of the matrix to be diagonalised.

3.14 Examples

1. Bloch Theorem: A lattice is a parallelepiped formed by three linearly
independent vectors a1, a2, a3. A set of vectors t = n1a1 + n2a2 +
n3a3 for all possible integers n1, n2, n3 generate lattice points which
together with the associated lattices form a crystal. The set t = {t}
clearly form a group under vector addition and the group is Abelian.
In fact, it is a direct product of three groups

t = t1 ⊗ t2 ⊗ t3
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where t1 = {n1a1}, t2 = {n2a2}, and t3 = {n3a3}. It is customary
to have a periodic boundary condition such that

T̂ (N1a1)ψ(r) = ψ(r +N1a1) = ψ(r)→ T̂ (N1a1) = T̂ (0) = 1

Similarly for the other two groups. N1 is taken to be infinite at the
end. The groups t1, t2, and t3 become cyclic and the irreducible
representations are given by ei2πk1/N1 , k1 = 1, 2, . . . , N1, and their
powers. It is useful at this stage to introduce the concept of reciprocal
space defined by

g1 = 2π
a2 × a3

a1 · a2 × a3

g2 = 2π
a3 × a1

a1 · a2 × a3

g3 = 2π
a1 × a2

a1 · a2 × a3

so that
gi · aj = 2πδij

With this definition, the direct product representations can be written

Tk(t) = eik·t

where k = (k1/N1)g1 + (k2/N2)g2 + (k3/N3)g3. It follows that the
eigenfunctions of a Hamiltonian with translational lattice symmetry
form basis functions for the irreducible representations of the group
of translations and they may be labelled by the irreducible represen-
tations k. This means

T̂ (t)ψk(r) = ψk(r + t) = ψk(r)eik·t

which is the Bloch theorem.

2. Normal modes (chapter 6 of Elliot and Dawber): When the atoms
in a molecule are displaced from their equilibrium positions, the po-
tential energy will increase. If the atoms are let free, there will be
an interchange between potential and kinetic energies resulting in
vibrations. These vibrations may be thought of as being composed
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of eigen modes or normal modes, each with a well defined frequency,
in the same way that a wavefunction can be decomposed into a
sum of eigenstates with well defined energies. The eigen modes may
be classified according to the irreducible representations of the sym-
metry group of the molecule, just like the the eigenstates of the
Hamiltonian.

The potential energy for arbitrary displacements of N atoms in a
molecule is given by

V = V0 +
∑

i

∂V

∂qi
qi +

∑

ij

∂2V

∂qi∂qj
qiqj

The sums run from 1 to 3N . At equilibrium, ∂V/∂qi = 0 so that
the Hamiltonian for molecular vibrations is given by

H =
∑

i

1

2
Miq̇

2
i +

∑

ij

1

2
Bijqiqj

where Bij = ∂2V/∂qi∂qj. It is conventional to absorb the masses
into the displacement coordinates by defining

αi =
√
Miqi, Dij = Bij/

√
MiMj

The Hamiltonian becomes

H =
∑

i

1

2
α̇2
i +

∑

ij

1

2
Dijαiαj

The matrix D is known as the dynamical matrix.

We can now introduce a 3N dimensional abstract space with or-
thonormal basis vectors {ei}. The 3N displacements of atoms in
real space may be mapped into a vector in the 3N dimensional ab-
stract space:

(q1, q2, . . . , q3N)→ q =
∑

i

eiαi

The unit vector ei corresponds to a displacement qi = 1/
√
Mi in real

space but we note that ei itself is not a displacement in real space
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but rather a displacement in the abstract space. We may define an
operator D̂ in the abstract space so that

V (q) =
1

2
(q, D̂q)

=
1

2

∑

ij

αiαj(ei, D̂ej)

which implies

Dij = (ei, D̂ej)→ D̂ej =
∑

i

eiDij

We would like to transform the Hamiltonian into the form H =
∑
i hi

so that the eigenvenctors of H can be written as a product of the
eigenvectors of h. This can be done by a unitary transformation

uk =
∑

i

eiaik

An arbitrary vector q may be written as

q =
∑

i

eiαi =
∑

k

ukQk =
∑

ki

eiaikQk → αi =
∑

k

aikQk

By choosing uk to be an eigenvector of D̂, i.e. D̂uk = ωkuk or∑
j Dijajk = ωkaik, the Hamiltonian becomes

H =
∑

k

[
1

2
Q̇2
k +

1

2
ωkQ

2
k

]

which is the desired form. Quantum mechanically, we replace Q̇2
k

with −∂2/∂Q2
k and the solutions to h = −∂2/∂Q2

k + 1
2
ωkQ

2
k are

ψn(k) = AHn(k)(
√
ωkQk)exp(−ωkQk/2)

εn(k) = (n(k) +
1

2
)ωk

We have set the Planck constant h/2π = 1.

So far we have not made any use of group theory and in principle we
can calculate the dynamical matrix D and diagonalise it to obtain
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the normal modes and the corresponding eigen frequencies. The
diagonalisation of D is greatly simplified by using group theory. The
eigen frequencies, however, cannot be obtained from group theory
alone because they depend on the strength of the potential. By
definition, we have

[T̂ (G), D̂] = 0

for all G and it immediately follows from Theorem 5 that the degen-
erate eigenvectors of D̂ (normal modes) form basis vectors for the
irreducible representations of the group.

The 3N dimensional space forms a 3N × 3N representation which
is in general reducible:

χ3N =
∑
γ

mγχ
γ

To calculate χ3N , we first write the basis vector as ei(R), i = x, y, z,
R = 1, 2, . . . , N , which corresponds to a displacement of atom R
along the i-axis. The effect of the symmetry operation on the basis
vector is given by

T̂ (G)ei(R) =
∑

R′j
ej(R

′)TR
′R

ji (G)

The character is given by

χ3N =
∑

Ri

TRRii = NRχ
V

where NR is the number of atoms unmoved by the symmetry oper-
ation T̂ (G) and χV is the character of the three dimensional vector
representation. This result can be understood by observing that when
T̂ (G) moves atom R to atom R′,

∑
i T

RR
ii = 0. When atom R is

not moved, then
∑
i T

RR
ii = χV .

As an example, we consider a molecule with D3 symmetry (three
atoms at the corners of an equilateral triangle). We have already
worked out the characters for the vector representation χV and they
are given by χV (Ce) = 3, χV (Cc) = 0, and χV (Cd) = −1. Thus
χ3N(Ce) = 3 · 3 = 9, χ3N(Cc) = 0, and χ3N(Cd) = 1 · (−1) =
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−1. It is then straightforward to decompose χ3N into the different
irreducible components using the character table of D3. We get

m1 =
1

6
(1 · 1 · 9 + 2 · 1 · 0 + 3 · 1 · (−1)) = 1

m2 =
1

6
(1 · 1 · 9 + 2 · 1 · 0 + 3 · (−1) · (−1)) = 2

m3 =
1

6
(1 · 2 · 9 + 2 · (−1) · 0 + 3 · 0 · (−1)) = 3

There are three non-degenerate modes and three doubly degenerate
modes. Actually, six of them correspond to rigid motions, i.e. there is
no relative motion between the atoms. The significance of classifying
the vibrations into normal modes is that when calculating absorption
or emission spectra it is possible to figure out which modes are al-
lowed in the absorption process. The simplest absorption processes
are caused by electric dipole transitions from the groundstate to some
vibrational excited states. The groundstate usually tranforms accord-
ing to the identity representation and the dipole operators transform
according to the vector representation. Thus the modes allowed are
given by those corresponding to the irreducible representations oc-
curing in the decomposition of the vector representation. In more
complicated absorption processes, there are intermediate states in-
volved. In this case the dominant operators are of the form xy, yz,
zx, x2, y2, and z2 (Raman spectra). These are in fact products of
x, y, and z, i.e. they transform according to the product of the
vector representations which can be decomposed into the irreducible
components. Care, however, has to be taken due to the fact that
the product functions are not linearly independent. See chapter 6 of
Elliot and Dawber for more examples and details.



Chapter 4

Lie Groups

4.1 Definitions

So far we have considered groups with a finite number of elements. In
this Chapter, we will study the so called continuous groups in which the
elements G are defined uniquely by a set of n independent continuous
real parameters a = (a1, a2, . . . , an) so that G(a) 6= G(b) unless a = b.
The number n is called the dimension of the group. Such groups have an
infinite number of elements. The elements of a continuous group satisfy
the multiplication law:

G(a)G(b) = G(c) (4.1)

This means that operating a group element G(b) followed by G(a) has
the same effect as operating a group element G(c) represented by a set of
parameters c. c must be a function of the paramaters a and b:

c = F(a,b) (4.2)

and we may write the multiplication law as:

G(a)G(b) = G(F(a,b)) (4.3)

As a convention, a = 0 is chosen to represent the unit element:

G(0) = 1 (4.4)

With this definition, it follows from Eqs. ( 4.1) and ( 4.2) that

F(a,0) = a ; F(0,b) = b ; F(0,0) = 0 (4.5)

63
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∂F(0,0)

∂a
=
∂F(0,0)

∂b
= 1 (4.6)

In addition, every element must have an inverse i.e. for a given set of
parameters a, there is a set of parameters q such that

G(a)G(q) = G(q)G(a) = G(0) = 1 (4.7)

The functions F(a,b) are assumed to be analytic functions of the pa-
rameters a and b, and this kind of group is called a Lie-group.

4.2 Infinitesimal Operators

An important concept in continuous groups is the concept of infinitesimal
operators which are obtained by considering group elements near the unit
element i.e. elements with small a:

G(a) = 1 + X · a + . . . (4.8)

Xi =

[
∂G

∂ai

]

a=0
(4.9)

The set of operators X = (X1, X2, . . . , Xn) are called the infinitesimal
operators, or generators, which are independent of the parameters a. It
will be shown below that every group element may be expressed in terms
of the infinitesimal operators so that the study of continuous groups may
be restricted in most cases to the study of these infinitesimal operators.

For small a and b we have

F(a,b) = F(a,0) +
∂F(0,0)

∂b
· b

= a + b

using Eq. ( 4.6). As a convention, a dot denotes a dot product or a
summation over the lower and upper vectors. This implies that

G(a)G(b) = G(F(a,b)) = G(a + b)

G(b)G(a) = G(F(b, a)) = G(b + a)
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i.e. the group elements are commutative in the vicinity of the unit element.
To relate the group elements and the infinitesimal operators, we study

the product G(a)G(b) for an arbitrary a but small b. To simplify the
writing, we define a matrix

M(a) ≡ ∂F(a,0)

∂b
→Mij(a) ≡ ∂Fi(a,0)

∂bj
(4.10)

and a convention that a dot on the left of M means a summation over the
rows whereas a dot on the right means a summation over the columns.

G(a)G(b) = G(F(a,b))

= G(F(a,0) + M(a) · b)

= G(a + M(a) · b)

= G(a) +
∂G(a)

∂a
·M(a) · b

On the other hand

G(a)G(b) = G(a)[1 + X · b]

so that

G(a)X · b =
∂G(a)

∂a
·M(a) · b

Since b are arbitrary and independent parameters, it must be that

G(a)X =
∂G(a)

∂a
·M(a) (4.11)

This equation relates the group element and its derivative at a to the
infinitesimal operators X.

We now try to find an explicit expression relating G(a) to X. Let
u = (u1, u2, . . . , un) be a unit vector (u · u = 1) in the parameter space
and let us project Eq. ( 4.11) along this unit vector:

G(a)X · u =
∂G(a)

∂a
·M(a) · u (4.12)

We define a curve in the parameter space by the following equation

da(t)

dt
= M(a) · u (4.13)
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with boundary condition a(0) = 0. The direction of this curve at t = 0 is

along the unit vector u because M(0) = ∂F(0,0)

∂b = 1. Using Eq. ( 4.13)

in ( 4.12) yields

G(a)X · u =
∂G(a)

∂a
· da
dt

=
dG(a)

dt

which can be formally solved to give

G(a(t)) = etX·u (4.14)

Thus, the group elements at finite parameters a can be obtained from
the infinitesimal operators X. The global properties of Lie groups are
determined by the infinitesimal operators X which are independent of the
parameters a. We have made an assumption, however, that every point a
in the parameter space can be reached by the curve defined in Eq. ( 4.13),
by starting along an appropriate direction u from the origin.

4.3 Lie Algebra

The infinitesimal operators satisfy commutation relations and to find these
relations, we differentiate Eq. ( 4.11) with respect to a parameter ai for
each component j:

∂G(a)

∂ai
Xj =

∑

k

[
∂2G(a)

∂ai∂ak

∂Fk(a,0)

∂bj
+
∂G(a)

∂ak

∂2Fk(a,0)

∂ai∂bj

]

Evaluating this expression for a = 0, we get

XiXj =
∂2G(0)

∂ai∂aj
+
∑

k

Xk
∂2Fk(0,0)

∂ai∂bj

Interchanging i↔ j and taking the difference, we get

[Xi, Xj] =
∑

k

Xkc
k
ij (4.15)
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where

ckij =
∂2Fk(0,0)

∂ai∂bj
− ∂2Fk(0,0)

∂aj∂bi
(4.16)

We see that the infinitesimal operators possess a closure property under
commutation. Operators possessing this property are said to form an al-
gebra and for Lie groups it is called Lie algebra. For every Lie group there
is a corresponding Lie algebra.

The coefficients ckij are called the structure constants and they are
purely determined by the functions F(a,b) which means that they are
independent of any particular representation of the group.

The structure constants are antisymmetric in the lower indices:

ckij = −ckji (4.17)

We can construct symmetric and anti-symmetric quantities from the struc-
ture constants. By summing over products of two structure constants, we
obtain symmetric matrices

gij =
∑

kl

ckilc
l
jk = gji (4.18)

Summing over products of these matrices and the structure constants yields

aijk =
∑
m

gimc
m
jk (4.19)

which are anti-symmetric with respect to an interchange of two indices.
This is because we have the following relation

∑

l

[
clijc

m
lk + cljkc

m
li + clkic

m
lj

]
= 0 (4.20)

which follows from the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

In this way, we can continue forming symmetric and antisymmetric quan-
tities from the structure constants.
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4.4 Casimir Operators

To construct the irreducible representations of a continuous group, it will
be useful to have some operators which commute with all of the infinitesi-
mal operators. The degenerate eigenfunctions of these operators may then
be used as basis functions for the irreducible representations because they
transform among themselves under group operations. We recall from Chap-
ter 3 that when [T̂ (G), Ĥ] = 0, the sets of degenerate eigenfunctions of Ĥ
form basis sets for the irreducible representations of the group (assuming
we have the full group, not a subgroup of a larger group).

The simplest operator that commute with the infinitesimal operators
X must be at least of second order in these operators because a linear
combination of Xi clearly will not in general commute with X due to Eq.
( 4.15). Thus we form the most general linear combination of second order
operators

C =
∑

ij

gijXiXj (4.21)

The matrix gij must be symmetric since every matrix can be written as a
sum of symmetric and anti-symmetric matrices and from Eq. ( 4.15) the
anti-symmetric part reduces to a linear combination of Xi. We evaluate
the commutation of this operator with an arbitrary Xk:

[C,Xk] =
∑

ij

gij[XiXj, Xk]

=
∑

ij

gij {Xi[Xj, Xk] + [Xi, Xk]Xj}

=
∑

ij

gij
∑

l

{
XiXlc

l
jk +Xlc

l
ikXj

}

=
∑

ijl

gijcljk {XiXl +XlXi}

The last step makes use of the fact that gij is symmetric. If we can find gij

such that
∑
j g

ijcljk is anti-symmetric with respect to the interchange i↔ l
then C is the required operator. We have in Eq. ( 4.19) an anti-symmetric
quantity with three indices but it involves no upper indices in the structure
constant. We may, however, write

cljk =
∑

ml′
glmgml′c

l′
jk
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=
∑
m

glmamjk

where we have defined the inverse of gij

∑
m

glmgml′ = δll′

and
amjk =

∑

l′
gml′c

l′
jk

as in Eq. ( 4.19) Continuing the evaluation of [C,Xk] we get

[C,Xk] =
∑

ijl

gij
∑
m

glmamjk {XiXl +XlXi}

=
1

2

∑

ijlm

[gijglm + gljgim]amjk {XiXl +XlXi}

=
1

4

∑

ijlm

[gijglm + gljgim][amjk + ajmk] {XiXl +XlXi}

Since amjk = −ajmk we obtain [C,Xk] = 0.
In general, it may be possible to form higher order Casimir operators,

which also commute with all of the infinitesimal operators. The irreducible
representations of the group may be labelled by the eigenvalues of these
Casimir operators. In the rotation group discussed later, we need only one
Casimir operator to label the irreducible representations.

4.5 Ladder Operators and Multiplets

For a given Lie group, some of the infinitesimal operators may commute
among themselves. The largest number of mutually commuting infinites-
imal operators is called the rank of the group. Let {Ĥi} be such a set
and {Êα} be the rest of the infinitesimal operators. Let also {Ĉi} be a
set of Casimir operators. Since {Ĉi} commute with {Ĥi} it is possible
to construct simultaneous eigenstates of {Ĉi} and {Ĥi} with eigenvalues
{Ci} and {Hi}:

Ĉi|Ci, Hi〉 = Ci|Ci, Hi〉
Ĥi|Ci, Hi〉 = Hi|Ci, Hi〉
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The remaining set of operators {Êα} can be expressed as ladder oper-
ators:

[Ĥi, Êα] = εiαÊα (4.22)

This can be done by forming a linear combination Êα =
∑
i X̂iaiα and

requiring that

[Ĥi,
∑

j

X̂jajα] = εiα
∑

j

X̂jajα

∑

jk

X̂kc
k
ijajα = εiα

∑

j

X̂jajα

∑

k

X̂k

∑

j

[ckij − εiαδjk]ajα = 0 → ∑

j

ckijajα = εiαakα

The coefficients aiα are the eigenvectors of the structure constants and εiα
are called the root vectors. Eq. ( 4.22) implies that

[Ĥi, Êα]|Ci, Hi〉 = εiαÊα|Ci, Hi〉
(Ĥi −Hi)Êα|Ci, Hi〉 = εiαÊα|Ci, Hi〉

Ĥi(Êα|Ci, Hi〉) = (Hi + εiα)(Êα|Ci, Hi〉)

i.e. Êα|Ci, Hi〉 is also an eigenstate of Ĥi but with an eigenvalue (Hi+εiα).
This means

Êα|Ci, Hi〉 = Aα(Ci, Hi)|Ci, Hi + εiα〉 (4.23)

The constants Aα can be determined from the Lie algebra. The states
generated by the ladder operators are the degenerate eigenstates of the
Casimir operators. This is because the Casimir operators commute with
all the infinitesimal operators and therefore the degenerate eigenstates of
the Casimir operators form an invariant subspace under the infinitesimal
operators. Acting X̂i on |Ci, Hi〉 results in a linear combination of states
with the same eigenvalues {Ci}. Such a set of degenerate states are called
a multiplet and they form an invariant subspace under the group operations.

Assuming that the multiplet spans a finite space, there must be a state
|ψ+〉 and |ψ−〉 with the largest and smallest values of {Hi} such that

Êα|ψ+〉 = 0, Êβ|ψ−〉 = 0

if Êα and Êβ increases and decreases the eigenvalues.
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We also have
[
Ĥi, [Êα, Êβ]

]
=
[
[Ĥi, Êα], Êβ]

]
+
[
Êα, [Ĥi, Êβ]

]
= (εiα + εiβ)[Êα, Êβ]

so that the commutator [Êα, Êβ] is itself a ladder operator with a root

(εiα + εiβ). If εiα + εiβ = 0, then [Êα, Êβ] is a linear combination of {Ĥi}.
It is clear from the above discussion that the number of Casimir oper-

ators needed to specify a multiplet is equal to the rank of the Lie group.

4.6 Summation over group elements

Many of the theorems that we have encountered involve summation over
group elements. In this section, we will study how to perform this sum-
mation for continuous groups. We have to replace the summation by an
integral over the parameters in the following way:

∑

G

f(G)→
∫
da w(a)f(G(a)) (4.24)

w(a) is a weight function describing the ”density” of elements in the pa-
rameter space.

In proving some theorems for finite groups, we make use of the rear-
rangement theorem. For these theorems to remain valid in the case of
continuous groups, we must require
∫
da w(a)f(G(a)G(b)) =

∫
da w(a)f(G(c)) =

∫
dc w(c)f(G(c))

(4.25)
From Eq. ( 4.3), G(a)G(b) = G(c) = G(F(a,b)), and for a fixed b, c is
a function of a.

∫
da w(a)f(G(a)) =

∫
dc w(c)f(G(c))

=
∫
da

∂c

∂a
w(c)f(G(c))

Comparison with Eq. ( 4.25) gives

∂c

∂a
w(c) = w(a) (4.26)
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where ∂c/∂a is the Jacobian.
To relate a to c we consider a small b:

c = F(a,b)

= F(a,0) +
∂F(a,0)

∂b
· b

= a + M(a) · b
where the matrix M is defined as in Eq. ( 4.10). To first order in b, the
Jacobian is given by

∂c

∂a
= 1 +

∂

∂a
·M(a) · b

Expanding w(c) about a to first order in b yields

w(c) = w (a + M(a) · b)

= w(a) +
∂w(a)

∂a
·M(a) · b

Substituting the above expressions into Eq. ( 4.26) gives
[
1 +

∂

∂a
·M(a) · b

] [
w(a) +

∂w(a)

∂a
·M(a) · b

]
= w(a)

Since b is arbitrary, we thus have

1

w(a)

∂w(a)

∂a
·M(a) = − ∂

∂a
·M(a)

or
∂ ln w(a)

∂a
= − ∂

∂a
·M(a) ·M−1(a) (4.27)

4.7 Rotation Group R3

As an example, we consider the rotation group in three dimensions, R3,
which often appears in many applications in physics, in particular in the
theory of angular momentum. The technique used in constructing the
irreducible representations of the rotation group is actually quite common
in Lie groups.
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4.7.1 Infinitesimal operators

A rotation in three dimensions may be denoted by R(αa) where a is the
axis of rotation and α is the angle of anti-clockwise rotation. It is easy to
show that

R(αa)r = cos α r + (1− cos α)(r · a)a + sin α (a× r) (4.28)

For small α we have to first order

R(a, α)r = (1 + α a×)r

= (1 + α
∑

i

aiei×)r

= (1 +
∑

i

αiei×)r (4.29)

We identify

Xx = ex×, Xy = ey×, Xz = ez×,
as the infinitesimal operators of the rotation group associated with the
parameters αx = αax, αy = αay and αz = αaz corresponding to rotations
about x−, y− and z− axes respectively. In other words, when α is small,
the rotation can be regarded as a vector sum of rotations about x−, y−
and z− axes.

In the Cartesian basis, we have explicitly

Xx =




0 0 0
0 0 −1
0 1 0




Xy =




0 0 1
0 0 0
−1 0 0




Xz =




0 −1 0
1 0 0
0 0 0
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4.7.2 Commutation Relations

In Cartesian coordinates, the commutation relations for the infinitesimal
operators are

[Xx, Xy] = Xz, [Xy, Xz] = Xx, [Xz, Xx] = Xy (4.30)

The infinitesimal operators are skew Hermitian (this is true in general if the
representation is unitary) but it is possible to define equivalent infinitesimal
operators Jk = iXk which are Hermitian. The commutation relations
become

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy (4.31)

We will show below that the commutation relations also follow from the
general results derived in the previous sections.

We consider a rotation R(βb) followed by R(αa) which may be affected
by a rotation R(γc):

R(γc) = R(αa)R(βb)

The main quantities to calculate are the three functions F(αa, βb) =
γc. What we have to calculate are the structure constants defined in Eq.
( 4.16). Since the derivatives of F(αa, βb) are taken at αa = 0 and
βb = 0, it is sufficient to consider small α and β. For small α, R(αa)
takes the form:

R(αa) =




1 −αz αy
αz 1 −αx
−αy αx 1




and similarly for R(βb). Thus we have
R(γc) = R(αa)R(βb) =



1− αyβy − αzβz −(αz + βz − αyβx) αy + βy + αzβx
αz + βz + αxβy 1− αxβx − αzβz −(αx + βx − αzβy)
−(αy + βy + αxβz) αx + βx − αyβz 1− αxβx − αyβy




The trace of R(γc) is (1 + 2cos γ), independent of the basis. Equating
this with the trace of R(αa)R(βb) gives

1 + 2cos γ = 3− 2(αxβx + αyβy + αzβz)

1 + 2(1− γ2/2) = 3− 2(αxβx + αyβy + αzβz)

γ2 = 2(αxβx + αyβy + αzβz)
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We also know that R(γc) is unitary and it does not alter γc so that
R(γc)γc = R†(γc)γc = γc or

[R(γc)−R†(γc)]γc = 0

This gives us the following equations:

−Cγy +Bγz = 0

Cγx − Aγz = 0

−Bγx + Aγy = 0

A = 2(αx + βx) + αyβz − αzβy
B = 2(αy + βy) + αzβx − αxβz
C = 2(αz + βz) + αxβy − αyβx

With γ2 = γ2
x + γ2

y + γ2
z , the solution to the above equations is

γx = pA, γy = pB, γz = pC

where

p =

[
2(αxβx + αyβy + αzβz)

A2 +B2 + C2

]1/2

A straightforward algebra shows that p = 1/2 to linear order in α and β.
The non-zero structure constants are then

czxy = cyzx = cxyz = 1 (4.32)

which gives the commutation relations in Eq. ( 4.30).

4.7.3 Casimir Operator

The Casimir operator can also be obtained directly from the results of the
previous section. We calculate the matrix gij defined in Eq. ( 4.18):

gxx =
∑

kl

ckxlc
l
xk

= czxyc
y
xz + cyxzc

z
xy

= −2
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The same results are obtained for gyy and gzz whereas the other matrix
elements are zero. Thus we get

gij = −2δij, gij = −1

2
δij

and the Casimir operator is therefore

C =
∑

ij

gijXiXj

= −1

2
(X2

x +X2
y +X2

z )

= −1

2
X2 =

1

2
J2 (4.33)

4.8 Irreducible Representations of R3

The method of constructing the irreducible representations for the rotation
group R3 is quite general since it is based on the commutation relations
in Eqn. ( 4.30) alone. The method may therefore be applied to other
continuous groups. Since every rotation can be built up from the infinites-
imal operators, an irreducible subspace under these infinitesimal operators
is also an irreducible subspace under the rotation group. The steps for
constructing the irreducible representations are as follows:

1. The sets of degenerate eigenvectors of the Casimir operator Ĵ2 form
irreducible subspaces under the infinitesimal operators Ĵx, Ĵy, and Ĵz.
The rank of R3 is one because there are no two mutually commuting
operators. Since Ĵ2 commutes with the infinitesimal operators, the
eigenvectors of Ĵ2 may be chosen simultaneously to be eigenvectors
of one of the infinitesimal operators. As a convention, we choose Ĵz.

We construct the following ladder operators

Ĵ± = Ĵx ± iĴy (4.34)

which may be obtained by solving the eigenvectors and eigenvalues
of cizj. Clearly, the set of operators Ĵ±, Ĵz are equivalent to the set
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of operators Ĵx, Ĵy, Ĵz. We may therefore work with the former set.
The commutation relations of these operators are

[Ĵz, Ĵ±] = ±Ĵ±, [Ĵ+, Ĵ−] = 2Ĵz (4.35)

The usefulness of these operators may be seen by applying Ĵz to
Ĵ±ψm where ψm is an eigenfunction of Ĵz with an eigenvalue m.

Ĵz(Ĵ±ψm) = (Ĵ±Ĵz ± Ĵ±)ψm

= Ĵ±(Ĵz ± 1)ψm

= Ĵ±(m± 1)ψm

= (m± 1)(Ĵ±ψm)

Thus, Ĵ±ψm must be proportional to ψm±1.

2. We assume that the irreducible representations of R3 have a finite
dimension. We choose basis functions which are eigenfunctions of
Ĵz. Let j be the largest eigenvalue of Ĵz in this basis. Then

Ĵ+ψj = 0 (4.36)

There may be more than one function with the largest eigenvalue.
We take one of these and operate Ĵ− repeatedly on this function:

Ĵ−ψj = cj−1ψj−1

Ĵ−ψj−1 = cj−2ψj−2 etc.

The c’s are normalisation constants. Since we have assumed that
the dimension of the irreducible representations is finite, it must be
that for some integer n we have

Ĵ−ψj−n = 0

The problem is to figure out what n is.

3. We show that ψm is an eigenfunction of Ĵ2 irrespective of the value
of m. This is to be expected because a set of degenerate eigenvectors
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of Ĵ2 form a basis for an irreducible representation.

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z

=
1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

z

= Ĵ+Ĵ− + Ĵ2
z − Ĵz

= Ĵ−Ĵ+ + Ĵ2
z + Ĵz

The last two relations have been obtained by using the the second
commutation relation in Eq. ( 4.35). Operating Ĵ2 on ψj we get

Ĵ2ψj = (Ĵ−Ĵ+ + Ĵ2
z + Ĵz)ψj

= j(j + 1)ψj

Operating Ĵ2Ĵ− on ψj yields

Ĵ2Ĵ−ψj = Ĵ−Ĵ2ψj

= j(j + 1)Ĵ−ψj−1

Thus ψj−1 is also an eigenfunction of Ĵ2 with eigenvalue j(j + 1).
We can continue the same procedure starting from ψj−1 so that it

follows that ψm, m = j, j − 1, . . . , j − n is an eigenfunction ofĴ2

with eigenvalue j(j + 1). We now operate Ĵ2 on ψj−n:

Ĵ2ψ̂j−n = (Ĵ+Ĵ− + Ĵ2
z − Ĵz)ψj−n

= [(j − n)2 − (j − n)]ψj−n
= (j − n)(j − n− 1)ψj−n

It follows that (j − n)(j − n − 1) = j(j + 1), which implies that
n = 2j and therefore j can be an integer or a half-integer.

4. Finally we show that the 2j + 1 functions ψj, ψj−1, . . . , ψ−j form
an irreducible subspace (transform among themselves or invariant)
under the operators Ĵ+, Ĵ−, Ĵz. It is clear that the functions trans-
form among themselves under Ĵ− and Ĵz. We show that they also
transform among themselves under Ĵ+:

Ĵ+cmψm = Ĵ+Ĵ−ψm+1
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= (Ĵ2 − Ĵ2
z + Ĵz)ψm+1

= [j(j + 1)− (m+ 1)2 + (m+ 1)]ψm+1

= (j +m+ 1)(j −m)ψm+1

To calculate the normalisation constants cm we take the dot product
cm(ψm+1, Ĵ+ψm) = (j+m+1)(j−m). Using the fact that J− = J†+,
we have

(ψm+1, Ĵ+ψm) = (J†+ψm+1, ψm)

= (J−ψm+1, ψm)

= (cmψm, ψm) = c∗m

Thus |cm|2 = (j+m+ 1)(j−m). There is an arbitrary phase factor
in cm and the usual convention due to Condon and Shortley is to
choose cm to be real and positive so that

cm =
√

(j +m+ 1)(j −m) (4.37)

Ĵ+ψm =
√

(j +m+ 1)(j −m)ψm+1 (4.38)

Ĵ−ψm =
√

(j +m)(j −m+ 1)ψm−1 (4.39)

To summarise, the irreducible representations of R3 are labelled by Rj,
with j = 0, ±1/2, ±1, ±3/2, ±2 . . ., which transform the (2j + 1)
functions ψj, ψj−1, . . . , ψ−j among themselves.

4.9 Characters of R3

Rotations by the same angle, R̂(a, φ) and R̂(b, φ), belong to the same
class irrespective of the axes a and b. This must be true because there is
always a rotation R̂(c, φ′) that brings the axis a to b or vice versa, i.e.

R̂(a, φ) = R̂−1(c, φ′)R̂(b, φ)R̂(c, φ′)

Geometrically, R̂(c, φ′) rotates a to b, R̂(b, φ) does a rotation by φ about
b and finally R̂−1(c, φ′) rotates b back to a and the net result is the same
as a rotation by φ about a.
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Since the characters of representations belonging to the same class are
the same, it is sufficient to consider the characters of Rz. We consider
the subgroup Rz consisting of rotations about the z-axis. This subgroup is
Abelian and the irreducible representations are therefore one dimensional.
We require R(z, φ)R(z, δφ) = R(z, φ + δφ). Expanding both sides in δφ
we get

R(z, φ)(1 + δφR′(z, 0)) = R(z, φ) + δφR′(z, φ)

R′(z, 0)R(z, φ) = R′(z, φ)

The solution is R(z, φ) = c exp(R′(z, 0)φ). For a unitary representation,
we may choose c = 1 and from the boundary condition R(z, φ) = R(z, φ+
2π), we deduce that R′(z, 0) = −im where m is a positive or negative
integer. Thus the irreducible representations of Rz are

Rm
z (φ) = exp(−imφ) (4.40)

labelled by m = 0,±1,±2, . . . and the angle φ. These are also the eigen-
functions of the infinitesimal operator Ĵz with eigenvalues m, as may be
easily verified.

It is clear that representation Rj(a, φ) is reducible under the group Rz

and by choosing the z-axis along a, it may be decomposed as

Rj(a, φ) = R−jz (φ)⊕R−j+1
z (φ)⊕ . . .⊕Rj

z(φ)

=
m=j∑

m=−j
⊕Rm

z (φ)

Thus the character is given by

χj(φ) =
m=j∑

m=−j
exp(−imφ)

=
sin (j + 1/2)φ

sin φ/2
(4.41)

which is easily obtained from the geometric series formula Sn =∑k=n−1
k=0 ark = a(1 − rn)/(1 − r) with n = (2j + 1), a = exp(ijφ),

and r = exp(iφ).
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4.10 The Vector-Coupling Theorem

The direct product of two irreducible representations of R3 referring to the
same rotation φ about a given axis a is given by

Rj1(a, φ)⊗Rj2(a, φ) =
∑

j

⊕cjRj(a, φ) (4.42)

To figure out the coefficient cj we use the fact that the character of a direct
product representation is the product of the characters of the individual
representations:

χj1(a, φ)χj2(a, φ) =
∑

j

⊕cjχj(a, φ)

The left hand side is given by

χj1χj2 =
j1∑

m1=−j1

j2∑

m2=−j2
e−im1φe−im2φ

= [ei(j1+j2)φ + ei(j1+j2−1)φ + . . .+ e−i(j1+j2)φ]

+ [ei(j1+j2−1)φ + ei(j1+j2−2)φ + . . .+ e−i(j1+j2−1)φ]

+ . . .

+ [ei(j1−j2)φ + ei(j1−j2−1)φ + . . .+ e−i(j1−j2)φ]

= χj1+j2 + χj1+j2−1 + . . .+ χj1−j2

assuming that j1 ≥ j2 without loss of generality. Therefore j1−j2 becomes
|j1− j2| in the general case. Comparison with the previous equation shows
that cj = 1 for j = j1 + j2, j1 + j2 − 1, . . . + |j1 − j2| which yields the
vector-coupling theorem:

Rj1(a, φ)⊗Rj2(a, φ) =
j1+j2∑

j=|j1−j2|
⊕Rj(a, φ) (4.43)

The rotation group is called simply reducible because mγ = 1.
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4.11 Clebsch-Gordan Coefficients

As discussed in section 3.11, a product of two states ψj1m1
ψj2m2

transforming
according to the product representation Rj1⊗j2 of the rotation group may
be expanded as follows:

ψ(m1,m2) = ψj1m1
ψj2m2

=
∑

JM

ΨJ
MC

J∗
M (m1,m2)

where the C’s are the Clebsch-Gordan coefficients which form a matrix
that brings the product representation Rj1⊗j2 into the block diagonal form
(section 3.4, Theorem 3):

Rj1
m′1m1

Rj2
m′2m2

=
j1+j2∑

J=|j1−j2|

∑

MM ′
CJ
M ′(m

′
1,m

′
2)RJ

M ′MC
J∗
M (m1,m2) (4.44)

This expansion is known as the Clebsch-Gordan series. No additional label
is needed in C because the rotation group is simply reducible. We have
dropped the dependence on j1 and j2 for clarity. We may also write, using
the unitarity of C

ΨJ
M =

∑
m1,m2

CJ
M(m1,m2)ψ(m1,m2) (4.45)

Thus
CJ
M(m1,m2) = (ψ(m1,m2),ΨJ

M) (4.46)

Since the new functions ΨJ
M are orthonormal, we have

∑
m1m2

|CJ
M(m1,m2)|2 = 1 (4.47)

By applying Ĵz to both sides of Eq. ( 4.45), it follows that CJ
M(m1,m2) = 0

unless m = m1 + m2 and from the vector-coupling theorem we also have
|j1 − j2| ≤ J ≤ j1 + j2:

CJ
M(m1,m2) = 0 unless

{
M = m1 +m2 or
|j1 − j2| ≤ J ≤ j1 + j2

(4.48)
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With the Condon and Shortley phase convention

Ĵ+ψ
j
m = Aj,+mψ

j
m+1

Ĵ−ψjm = Aj,−mψ
j
m−1

where

Aj,m =
√

(j −m)(j +m+ 1), Aj,j = Aj,|m|>j = 0 (4.49)

the Clebsch-Gordan coefficients become real.
The Clebsch-Gordan coefficients for fixed j1 and j2 and a chosen j can

be calculated from recursion relations obtained by applying Ĵ− and Ĵ+ to
both sides of Eq. ( 4.45):

AJ,−MΨJ
M−1

=
∑
n1n2

CJ
M(n1, n2) [ Aj1,−n1ψ(n1 − 1, n2) + Aj2,−n2ψ(n1, n2 − 1) ]

AJ,+MΨJ
M+1

=
∑
n1n2

CJ
M(n1, n2) [ Aj1,+n1ψ(n1 + 1, n2) + Aj2,+n2ψ(n1, n2 + 1) ]

Taking the dot product with ψ(m1,m2) and setting M → M + 1 and
M → M − 1 in the first and second equation above we get the recursion
relations:

AJ,+MCM(m1,m2) = Aj1,+m1CM+1(m1 + 1,m2)

+ Aj2,+m2CM+1(m1,m2 + 1) (4.50)

AJ,−MCM(m1,m2) = Aj1,−m1CM−1(m1 − 1,m2)

+ Aj2,−m2CM−1(m1,m2 − 1) (4.51)

To simplify the notation, we have dropped the superscript J since it is
fixed. There is an ambiguity in the sign and this is fixed by choosing the
convention that

CJ(j1, J − j1) > 0 (4.52)
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As an example we evaluate the Clebsch-Gordan coefficients for a given
j2 = 1/2 which gives possible values of J = j1 − 1/2, j1 + 1/2. To
simplify the notation further, we drop the second argument in C since
it can be obtained by substracting the first argument from the subscript.
We consider the case J = j1 − 1/2. With m2 = ±1/2 we get from the
recursion relations

AJ,MCM(M − 1/2) = Aj1,M−1/2CM+1(M + 1/2)

AJ,−M−1CM+1(M + 1/2) = Aj1,−M−1/2CM(M − 1/2)

+ Aj2,−1/2CM+1(M + 1/2)

AJ,M−1CM−1(M − 1/2) = Aj1,M−1/2CM(M + 1/2)

+ Aj2,−1/2CM(M − 1/2)

AJ,−MCM(M + 1/2) = Aj1,−M−1/2CM−1(M − 1/2)

These are four linear equations with four unknowns but since the equations
are homogeneous, the solutions can only be expressed as ratios. However,
the additional condition in Eq. ( 4.47) determines the absolute magnitudes
and condition 4.52 fixes the sign. Similarly we can generate the recursion
relations for J = j2 + 1/2. The solutions in complete notation are

C
j1±1/2
M (M − 1/2, 1/2) = ±

√
j1 ±M + 1/2

2j1 + 1

C
j1±1/2
M (M + 1/2,−1/2) =

√
j1 ∓M + 1/2

2j1 + 1

The Clebsch-Gordan coefficients can be also calculated by using the
projection operator:

P̂ J =
∏

K 6=J
P̂ J
K =

∏

K 6=J

[
Ĵ2 −K(K + 1)

J(J + 1)−K(K + 1)

]
(4.53)

which when applied to ψm1,m2 will annihilate all components except
CJ
M(m1,m2)ΨJ

M where M = m1 +m2:

P̂ Jψm1,m2 = CJ
M(m1,m2)ΨJ

M

⇒ CJ
M(m′1,m

′
2) CJ

M(m1,m2) = (ψm′1,m′2 , P̂
Jψm1,m2)
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We evaluate P̂ J
Kψm1,m2 , using the identity Ĵ2 = Ĵ−Ĵ+ + Ĵz(Ĵz + 1):

P̂ J
Kψm1,m2 = [J(J + 1)−K(K + 1)]−1

× [ { Aj1,m1Aj1,−m1−1 + Aj2,m2Aj2,−m2−1

+M(M + 1)−K(K + 1) } ψ(m1,m2)

+Aj1,m1Aj2,−m2ψ(m1 + 1,m2 − 1)

+Aj2,m2Aj1,−m1ψ(m1 − 1,m2 + 1) ]

= [J(J + 1)−K(K + 1)]−1

× [ { (j1 −m1)(j1 +m1 + 1) + (j2 −m2)(j2 +m2 + 1)

+M(M + 1)−K(K + 1) } ψ(m1,m2)

+
√

(j1 −m1)(j1 +m1 + 1)(j2 +m2)(j2 −m2 + 1)

×ψ(m1 + 1,m2 − 1)

+
√

(j2 −m2)(j2 +m2 + 1)(j1 +m1)(j1 −m1 + 1)

×ψ(m1 − 1,m2 + 1) ]

We evaluate the previous example using the projection operator
method. Consider the case J = j1 − 1/2, m2 = −1/2 ⇒ m1 = M + 1/2.
We have P̂ J = P̂ J

j1+1/2 since there are only two possible values of
K = j1 ± 1/2. Thus,

|Cj1−1/2
M (M + 1/2,−1/2)|2
= (ψ(M + 1/2,−1/2), P̂

j1−1/2
j1+1/2ψ(M + 1/2,−1/2))

=
j1 +M + 1/2

2j1 + 1

Using the sign convention in ( 4.52) we get

C
j1−1/2
M (M + 1/2,−1/2) =

√
j1 +M + 1/2

2j1 + 1

because it must be positive when M = j1 − 1/2. We also have

C
j1−1/2
M (M − 1/2, 1/2) C

j1−1/2
M (M + 1/2,−1/2)

=

√
(j1 +M + 1/2)(j1 −M + 1/2)

−(2j1 + 1)
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so that

C
j1−1/2
M (M − 1/2, 1/2 = −

√
j1 −M + 1/2

2j1 + 1

in agreement with the previous results.

The general formula for the Clebsch-Gordan coefficients has been eval-
uated by Wigner (Gruppentheorie, Vieweg-Verlag, Brunswick, 1931 or in
the translated version, Group Theory, Academic Press, New York, 1959).
Wigner’s closed expression is

CJ
M(m1,m2) = δM,m1+m2

√
2J + 1

×
√√√√(J + j1 − j2)!(J − j1 + j2)!(j1 + j2 − J)!(J +M)!(J −M)!

(j1 + j2 + J + 1)!(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!

× ∑
ν

(−1)ν+j2+m2

ν!

(j2 + J +m1 − ν)!(j1 −m1 + ν)!

(J − j1 + j2 − ν)!(J +M − ν)!(ν + j1 − j2 −M)!

(4.54)

Racah (G. Racah, Phys. Rev. 62, 438 (1942)) derived a more symmetrical
form:

CJ
M(m1,m2) = δM,m1+m2

√
2J + 1

×
√√√√(j1 + j2 − J)!(J + j1 − j2)!(J + j2 − j1)!

(j1 + j2 + J + 1)!

×
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(J +M)!(J −M)!

× ∑
ν

(−1)ν

ν!

{
1

(j1 + j2 − J − ν)!(j1 −m1 − ν)!(j2 +m2 − ν)!

× 1

(J − j2 +m1 + ν)!(J − j1 −m2 + ν)!

}

(4.55)

The most frequently used Clebsch-Gordan coefficients are tabulated in
many books on atomic physics.
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4.12 Spherical Harmonics

We wish to find explicit basis functions for the irreducible representations of
the rotation group. To do this, we need to know the form of the infinitesi-
mal operators in function space. We form an operator representation of the
group elements, R → T̂ (R), and study its effect on an arbitrary function
ψ(x, y, z). First we consider a small rotation about the z-axis:

T̂ (R(γz))ψ(x, y, z) = ψ(R−1(γz)(x, y, z))

= ψ(x+ γy, y − γx, z)

=

[
1 + γ

(
y
∂

∂x
− x ∂

∂y

)]
ψ(x, y, z)

The same procedure can be applied to the x- and y-axes. The infinitesimal
operators in function space are therefore

Ĵz = i

(
y
∂

∂x
− x ∂

∂y

)
(4.56)

Ĵy = i

(
x
∂

∂z
− z ∂

∂x

)
(4.57)

Ĵx = i

(
z
∂

∂y
− y ∂

∂z

)
(4.58)

These are identical to the angular momentum operators in quantum me-
chanics.

The procedure for constructing the irreducible representations of R3

tells us that we should start with an eigenfunction of Ĵz and Ĵ2 and then
we apply the ladder operators repeatedly in order to span the irreducible
subspace corresponding to a set of degenerate eigenvectors of Ĵ2. The sim-
plest function, other than a constant, that one can think of is x− iy which
is an eigenfunction of Ĵz with eigenvalue −1 and it is also an eigenfunction
of Ĵ2. Furthermore,

Ĵ− = (Ĵx − iJy)(x− iy) = 0

which implies that (x− iy) has the smallest value of m among the degen-
erate eigenfunctions of Ĵ2. To generate the irreducible subspace, we apply
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the operator Ĵ+ repeatedly on (x− iy) until it vanishes:

Ĵ+(x− iy) = 2z

Ĵ+z = −(x+ iy)

Ĵ+(x+ iy) = 0

(x−iy), z, and−(x+iy) thus form an irreducible subspace with eigenvalues
of Ĵz equal to m = −1, 0, 1 respectively. We immediately recognise that
this set corresponds to the j = 1 representation with eigenvalue of Ĵ2 equal
to j(j+1) = 2, as may be easily verified. These functions are proportional
to the spherical harmonics for l = 1. Since r2 = x2 + y2 + z2 is invariant
under rotation, we may choose r = 1. In polar coordinates, we then have
z = cos θ, y = sin θ sin φ, and x = sin θ cos φ, so that

Y 1
1 = −

√
3

8π
(x+ iy) = −

√
3

8π
sin θ eiφ

Y 1
0 =

√
3

4π
z =

√
3

4π
cos θ

Y 1
−1 =

√
3

8π
(x− iy) =

√
3

8π
sin θ e−iφ

which are the spherical harmonics Y l
m for l = 1. The normalisation con-

stants are determined by integrating the square of each function over the
solid angle and requiring the integral to be unity. Higher l spherical har-
monics may be generated in the same fashion by applying the operator
Ĵ+ on (x− iy)l repeatedly and normalising the resulting functions as just
mentioned above. There is an ambiguity in the sign. As a convention, the
spherical harmonics are defined such that

Y l
−l =

√
(2l)!

2ll!

√
2l + 1

4π
(x− iy)l (4.59)

which fixes the sign.
The spherical harmonics for each l form an irreducible subspace under

rotation and therefore provide an irreducible representation of the rotation
group R3. Under rotation, the spherical harmonics transform among them-
selves with the same l. Two spherical harmonics with different l values will
never transform to each other under rotation because they belong to two
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distinct irreducibe subspaces of the rotation group. This means that we can
decompose an arbitrary function f(r, θ, φ) into the irreducible subspaces
formed by the spherical harmonics as follows:

f(r, θ, φ) =
∑

lm

flm(r)Y l
m(θ, φ)

From the definition of the spherical harmonics it is easy to show that:

Y l
m(0, φ) =

√
2l + 1

4π
δm,0 (4.60)

Y l
0 (θ, φ) =

√
2l + 1

4π
Pl(cos θ) (4.61)

The last equation may be thought of as the definition of the Legendre
polynomials.

We can now derive some useful identities but first we write down the
transformation of spherical harmonics under an arbitrary rotation R in the
following way:

T̂ (R)Y l
m(θ, φ) = Y l

m(θ′, φ′) =
∑

m′
Y l
m′(θ, φ)Rl

m′m (4.62)

or

Y l
m(θ, φ) =

l∑

m′=−l
Rl∗
mm′Y

l
m′(θ

′, φ′) (4.63)

where Rl
m′m is the irreducible representation of a rotation R in the spher-

ical harmonics basis. We take the point of view that (θ, φ) and (θ′, φ′)
correspond to the same physical point, i.e. it is the coordinate system
which is rotated. Considering a point (θ, φ) = (θz, φz) on the rotated z
axis corresponding to θ′ = 0 we get

Rl
m0 =

√
4π

2l + 1
Y l∗
m (θz, φz) (4.64)

It follows immediately by substituting this into Eq. ( 4.62) for m = 0 that

Y l
0 (θ′, φ′) =

√
4π

2l + 1

l∑

m=−l
Y l
m(θ, φ)Y l∗

m (θz, φz) (4.65)



90 CHAPTER 4. LIE GROUPS

By Eq. ( 4.61) we get the addition theorem

Pl(cos θ
′) =

4π

2l + 1

l∑

m=−l
Y l∗
m (θz, φz)Y

l
m(θ, φ) (4.66)

For the special case of θ = θz and φ = φz we have θ′ = 0 so that

l∑

m=−l
Y l∗
m (θ, φ)Y l

m(θ, φ) =
2l + 1

4π

Thus the quantity on the left hand side is invariant under rotation since
the (θ, φ) is arbitrary.

A product of two spherical harmonics transforms according to the direct
product representation which is in general reducible. Using Eq. ( 4.64) in
Eq. ( 4.44) we obtain

Y l1
m1

(θ, φ)Y l2
m2

(θ, φ) =
l1+l2∑

L=|l1−l2|

√√√√(2l1 + 1)(2l2 + 1)

4π(2L+ 1)

× CL
0 (0, 0)CL

M(m1,m2)Y L
M((θ, φ)

(4.67)

where M = m1+m2. From this we can evaluate the frequently encountered
integral of three spherical harmonics:

∫
dΩ Y L∗

M Y l1
m1
Y l2
m2

=

√√√√(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
CL

0 (0, 0)CL
M(m1,m2)

(4.68)



Chapter 5

Atomic Physics

The Hamiltonian Ĥ of an atom in the absence of external fields is given by

Ĥ =
∑

i

[ti − Z/ri] + 1/2
∑

i 6=j
1/rij +

∑

i

ξ(ri)li · si (5.1)

It is useful to break up Ĥ as follows:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (5.2)

where

Ĥ0 =
∑

i

ĥ0(ri) =
∑

i

[ti − Z/ri + Veff (ri)] (5.3)

Ĥ1 = 1/2
∑

i6=j
1/rij −

∑

i

Veff (ri) (5.4)

Ĥ2 =
∑

i

ξ(ri)li · si (5.5)

Veff is a spherically symmetric single-particle potential. The reason for the

above division of Ĥ is that Ĥ0 is a single-particle operator which can be
solved easily. By choosing Veff appropriately, Ĥ1 may be made small so

that it can be treated as a perturbation. Ĥ2 is usually small and can also
be treated as a perturbation and we assume that Ĥ2 << Ĥ1.

The objective of the present chapter is to set up the Hamiltonian ma-
trix and exploit the symmetry properties of the Hamiltonian by means of
group theory in order to simplify our task. We consider the terms in the
Hamiltonian one by one starting with Ĥ0.

91
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5.1 Ĥ0

Ĥ0 has two kinds of symmetry. It is invariant under permutations of the
electron coordinates (indistinguishability) and under separate rotations of
the electron coordinates. The eigenfunctions of Ĥ0 must therefore form
basis functions for the irreducible representations of the permutation and
rotation groups. For a permutation group of N elements, there is always a
one-dimensional irreducible representation whose basis functions are totally
anti-symmetric, meaning that the functions change sign whenever two co-
ordinates are interchanged. It does not follow from group theory that the
eigenfunctions of the Hamiltonian should be totally anti-symmetric but for
fermions, these are the only ones found in nature (Pauli principle). These
anti-symmetric functions can be written most conveniently as Slater de-
terminants which are linear combinations of

∏
i ψi(ri), where ĥ0ψi = εiψi,

with the coordinates permuted:

Ψ(1, 2, . . . , Z) =
1√
Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) . . . ψZ(1)
ψ1(2) ψ2(2) . . . ψZ(2)
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

ψ1(Z) ψ2(Z) . . . ψZ(Z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.6)

We have labeled the coordinates ri by i for simplicity. Take for example
the simplest non-trivial case of two electrons. The Slater determinant is

Ψ12(1, 2) =
1√
2

[ψ1(1)ψ2(2)− ψ1(2)ψ2(1)]

which changes sign when the coordinates or the quantum labels 1 and 2
are interchanged Moreover, it becomes zero when the coordinates or the
quantum labels 1 = 2, which is a general property of a determinant that
it is zero whenever two rows or columns are the same. This is simply the
Pauli exclusion principle. Since Ĥ0 is a sum of single-particle operators, its
solution is just a single Slater determinant. From now on we assume that
basis functions needed to set up the secular equation for Ĥ must be Slater
determinants.

We now consider the rotational symmetry which implies that

[T̂ (R), ĥ0] = 0
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It follows that

[ĥ0, L̂x] = [ĥ0, L̂y] = [ĥ0, L̂z] = [ĥ0, L̂
2] = 0

and the eigenstates of ĥ0 may be chosen to be simultaneous eigenstates
of L̂2 and L̂z. Each energy level of ĥ0 is (2l + 1) degenerate since the
irreducible representations of R3 are labelled by Rl with dimensions (2l+1).
Neglecting spin, the eigenstates must have the following form:

ψnlm(r) = unl(r)Y
l
m(θ, φ)

where Y l
m is an eigenfunction of L̂z and L̂2. Operating ĥ0 on ψnlm shows

that unl(r) must be a solution to the radial Schrödinger equation corre-
sponding to ĥ0, which is a familiar result.

We now take into account spin and label the spin states by χms(σ)
where the spin coordinate σ can only take two discrete values σ = ±1:

χ+(1) = 1, χ+(−1) = 0, χ−(1) = 0, χ−(−1) = 1,

Physical observation shows that the spin behaves like angular momentum
so that

T̂ (R)χms(σ) =
∑

m′s

χm′s(σ)T
1/2
m′sms(R)

The spin states form a basis for the two dimensional irreducible representa-
tion of R3 corresponding to j = 1/2. The eigenstate of ĥ0 including spin
is

ψnlmms(r, σ) = unl(r)Y
l
m(θ, φ)χms(σ)

To summarise, the eigenfunctions of Ĥ0 are simply single Slater deter-
minants with the orbitals given by the eigenfunctions of ĥ0. In determining
the eigenstates of (Ĥ0 + Ĥ1) we will use these eigenfunctions as basis
functions.

5.2 Ĥ0 + Ĥ1

We now consider (Ĥ0+Ĥ1) which is invariant under simultaneous rotations
of the position coordinates of the electrons. It is also implicitly invariant
under simultaneous rotations in the spin coordinates. Although (Ĥ0 +
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Ĥ1) has no explicit spin dependence, it is assumed that each electron
carries a spin and the spin dependence enters implicitly through the Pauli
principle. The degenerate eigenfunctions of (Ĥ0 + Ĥ1) must therefore
form an invariant subspace under simultaneous rotations of the space or
spin coordinates.

The infinitesimal operators for the simultaneous rotations in space or
spin coordinates are given by the sum of the infinitesimal operators corre-
sponding to each electron coordinate. Thus

L̂x =
∑

i

L̂x(i), L̂y =
∑

i

L̂y(i), L̂z =
∑

i

L̂z(i)

where L̂z(i) acts on the coordinate ri. Similarly for the infinitesimal op-
erators in the spin space Ŝx, Ŝy, and Ŝz. These six infinitesimal operators
correspond to a direct product RL

3 ⊗RS
3 since the orbital and spin operators

commute. (Ĥ0 +Ĥ1) commutes with L̂x, L̂y, L̂z, and L̂2 and with the spin

counterpart. As before we may choose the eigenfunctions of (Ĥ0 + Ĥ1) to
be simultaneous eigenfunctions of L̂z and L̂2 and of Ŝz and Ŝ2. (Ĥ0 + Ĥ1)
no longer commutes with the angular momentum or spin operators of each
electron. The eigenfunctions of Ĥ0 are still eigenfunctions of L̂z and Ŝz
but not of L̂2 or Ŝ2.

5.2.1 Configuration and Term

In atoms, we need only consider the valence electrons because the electrons
forming a closed shell act effectively like a spherically symmetric potential
which can be combined with Veff . We define a configuration by a sym-
bol such as s1p1 meaning that there is one electron in an s-shell and one
electron in a p-shell. Thus the superscript indicates the number of elec-
trons. We use the spectroscopic notations s, p, d, f, . . . corresponding to
l = 0, 1, 2, 3, . . . respectively.

When there are more than one electron, the representation for simul-
taneous rotations of the electron coordinates is given by a direct product
of each rotation. According to the vector-coupling theorem, the direct
product representation is in general reducible. Since (Ĥ0 + Ĥ1) com-
mute with rotation operators in space and spin coordinates separately,
the energy levels of (Ĥ0 + Ĥ1) can be labelled with L and S and each
energy level is (2L + 1)(2S + 1) degenerate. The corresponding states
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are conventionally written as 2S+1L and they are called ”term” (multi-
plet). To illustrate the concept of term, consider two p electrons. Ac-
cording to the vector-coupling theorem, the irreducible representations for
simultaneous rotations of the two electron space coordinates correspond to
L = l1 +l2, l1 +l2−1, . . . , |l1−l2| = 2, 1, 0 since l1 = l2 = 1. Similarly, the
irreducible representations for simultaneous rotations of the two electron
spin coordinates correspond to S = 1, 0 since s1 = s2 = 1/2. The possible
terms are then given by 3D, 3P, 3S, 1D, 1P, 1S. Some of these terms
may not be allowed by the Pauli exclusion principle when the two electrons
are equivalent as we shall see below.

5.2.2 Ladder Operator Method

As just discussed above, the eigenfunctions of Ĥ0 are still eigenfunctions
of L̂z and Ŝz but not of L̂2 or Ŝ2. However, we know that we can al-
ways generate an invariant subspace by applying the symmetry operators
repeatedly on an arbitrary function in that subspace. If we know one of the
eigenfunctions of L̂2 and Ŝ2 then we can construct the other degenerate
eigenfunctions by using the ladder operators. Let us illustrate this method
by considering a specific example since the generalisation to an arbitrary
case is quite clear.

Consider a configuration p2 and let us use the notation |+ 1+〉| − 1−〉
to represent a Slater determinant where one electron has ml = +1 and
ms = +1/2 and the other electron has ml = −1 and ms = −1/2. ml

and ms are respectively the eigenvalues of L̂z and Ŝz of the individual elec-
trons. Let us list the possible Slater determinants corresponding to this
configuration starting with the largest possible value of ML =

∑
iml(i).

We note also that the two electrons are equivalent because they occupy
the same p shell. There are (2× 3)!/2!(2× 3− 2)! = 15 possible ways of
placing two identical electrons in a p-shell:
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ML MS

Ψ1 = |1+〉|1−〉 2 0
Ψ2 = |1+〉|0+〉 1 1
Ψ3 = |1+〉|0−〉 1 0
Ψ4 = |1−〉|0+〉 1 0
Ψ5 = |1−〉|0−〉 1 −1
Ψ6 = |1+〉| − 1+〉 0 1
Ψ7 = |1+〉| − 1−〉 0 0
Ψ8 = |1−〉| − 1+〉 0 0
Ψ9 = |1−〉| − 1−〉 0 −1
Ψ10 = |0+〉|0−〉 0 0
Ψ11 = |0+〉| − 1+〉 −1 1
Ψ12 = |0+〉| − 1−〉 −1 0
Ψ13 = |0−〉| − 1+〉 −1 0
Ψ14 = |0−〉| − 1−〉 −1 −1
Ψ15 = | − 1+〉| − 1−〉 −2 0

We keep in mind that Ψi is a Slater determinant so that e.g. |1+〉|1−〉 =
−|1−〉|1+〉. It is natural when using the ladder operator method to start
from a Slater determinant with the largest values of ML and/or MS since
it is more likely that it is an eigenstate of L̂2 and/or Ŝ2. Ψ1 has the largest
value of ML and it is the only one. Moreover, it has MS = 0 and therefore
it must be an eigenfunction belonging to singlet 1D. We check that it is
an eigenfunction of L̂2 and Ŝ2:

L̂+Ψ1 = [L̂+(1) + L̂+(2)]|+ 1+〉|+ 1−〉 = 0

L̂zΨ1 = (L̂z(1) + L̂z(2))|+ 1+〉|+ 1−〉
= (1 + 1)|+ 1+ + 1−〉
= 2Ψ1

L̂2
zΨ1 = 4Ψ1

L̂2Ψ1 = 6Ψ1

Ŝ+Ψ1 = [Ŝ+(1) + Ŝ+(2)]|+ 1+〉|+ 1−〉 = 0

ŜzΨ1 = [Ŝz(1) + Ŝz(2)]|+ 1+〉|+ 1−〉 = 0

Ŝ2Ψ1 = 0
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We generate the invariant subspace formed by the degenerate eigenfunc-
tions of L̂2 corresponding to the term 1D:

L̂−Ψ1 = [L̂−(1) + L̂−(2)]|+ 1+〉|+ 1−〉
=

√
(1 + 1)(1− 1 + 1)|0+〉|+ 1−〉

+
√

(1 + 1)(1− 1 + 1)|+ 1+〉|0−〉
=
√

2(Ψ3 −Ψ4)

We continue applying the lowering operator:

L̂−(Ψ3 −Ψ4) =
√

2(2Ψ10 + Ψ7 −Ψ8)

L̂−(2Ψ10 + Ψ7 −Ψ8) = 3
√

2(Ψ12 −Ψ13)

L̂−(Ψ12 −Ψ13) = 2
√

2Ψ15

L̂−Ψ15 = 0

The functions Ψ1, (Ψ3 − Ψ4), (Ψ7 − Ψ8 + 2Ψ10), (Ψ12 − Ψ13), and Ψ15

are degenerate eigenfunctions of L̂2 and Ŝ2 corresponding to the term 1D.
Ψ2 must be an eigenfunction belonging to 3P because it is the only one

with ML = 1 and MS = 1 and the term 3D does not exist. We operate
Ŝ− on Ψ2 to obtain the triplets with ML = 1.

Ŝ−Ψ2 = Ŝ−|1+〉|0+〉
= |1−〉|0+〉+ |1+〉|0−〉
= Ψ4 + Ψ3

Ŝ−(Ψ4 + Ψ3) = 2Ψ5

Ŝ−Ψ5 = 0

Operating L̂+ on Ψ2 yields a state | + 1+〉| + 1+〉 which is forbidden
by the Pauli exclusion principle. This state would be allowed if the two
electrons occupied different p shells. We operate L̂− on Ψ2 and then use
Ŝ− to generate the triplets with ML = 0:

L̂−Ψ2 =
√

2Ψ6

Ŝ−Ψ6 = Ψ8 + Ψ7

Ŝ−(Ψ8 + Ψ7) = 2Ψ9

Ŝ−Ψ9 = 0
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Continuing along the same fashion we generate the triplets with ML =
−1

L̂−Ψ6 =
√

2Ψ11

Ŝ−Ψ11 = Ψ13 + Ψ12

Ŝ−(Ψ13 + Ψ12) = 2Ψ14

Ŝ−Ψ14 = 0

We have generated 14 eigenfunctions. The only one left must belong
to the term 1S. There are three Slater determinants, Ψ7, Ψ8, Ψ10, with
ML = 0 and MS = 0. We have already found two eigenfunctions Ψ7−Ψ8+
2Ψ10 and Ψ7 +Ψ8 belonging to 1D and 3P respectively. The eigenfunction
belonging to 1S must be Ψ7−Ψ8−Ψ10 since it is orthogonal to the previous
two eigenfunctions.

Below we summarise our results, where the eigenfunctions have been
normalised:

Term ML MS Eigenfunction
1D 2 0 Ψ1

1 0 (Ψ3 −Ψ4)/
√

2

0 0 (Ψ7 −Ψ8 + 2Ψ10)/
√

6

-1 0 (Ψ12 −Ψ13)/
√

2
-2 0 Ψ15

3P 1 1 Ψ2

0 (Ψ3 + Ψ4)/
√

2
-1 Ψ5

0 1 Ψ6

0 (Ψ7 + Ψ8)/
√

2
-1 Ψ9

-1 1 Ψ11

0 (Ψ12 + Ψ13)/
√

2
-1 Ψ14

1S 0 0 (Ψ7 −Ψ8 −Ψ10)/
√

3

The method that we have used to construct the eigenfunctions of L̂2

and Ŝ2 and hence of (Ĥ0 + Ĥ1) is systematic but it becomes tedious as
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the number of Slater determinants increases. We discuss below a different
method which is more suitable for the latter case.

5.2.3 Projection Operator Method

Let us illustrate the method by using the example we have just considered.
Each of the Slater determinant Ψ1, Ψ2, . . . must be a linear combination
of eigenfunctions belonging to 1D, 3P , and 1S. It is best to start with a
Slater determinant with ML = 0 and MS = 0 since it is contained in all
the terms. Let us take Ψ7 and suppose that we are interested in finding
the component of 1D. We first project out the component of 3P out of
Ψ7 and then we project out the comoponent of 1S:

[
L̂2 − 1(1 + 1)

]
Ψ7 = 2Ψ10

[
L̂2 − 0(0 + 1)

]
Ψ10 = 2Ψ10 + Ψ7 −Ψ8

This is proportional to the eigenfunction of 1D with ML = 0 and MS = 0
which is in agreement with the result obtained by using the ladder operator
method.

We can arrive at the same result if we first find the eigenfunction of Ŝ2

with S = 0 by projecting out the component with S = 1:

[Ŝ2 − 1(1 + 1)]Ψ7 = Ψ7 + Ψ8 − 2Ψ7

= Ψ8 −Ψ7

Thus (Ψ8−Ψ7) is an eigenfunction of Ŝ2 corresponding to S = 0 (singlet).
Now we project out the component of 1S. It is not necessary to project
out the component of 3P because (Ψ8 − Ψ7) is a singlet and therefore it
cannot contain eigenfunctions of 3P .

[L̂2 − 0(0 + 1)](Ψ8 −Ψ7) = 2(−Ψ10 + Ψ8)− 2(Ψ10 + Ψ7)

= −2(Ψ7 −Ψ8 + 2Ψ10)

which is proportional to the previous result.
From a given Slater determinant, the projection operator method allows

us to arrive at a particular eigenfunction of a term by projecting out all the
other terms one by one.
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5.2.4 Term Energies

In this section we discuss the calculations of term energies. To calculate
the term energies, we need matrix elements of the type

〈Ψi|Ĥ0 + Ĥ1|Ψj〉

It is convenient to calculate them in the occupation number representation
in which (Ĥ0 + Ĥ1) is given by

Ĥ0 + Ĥ1 =
∑

ij

ĉi〈i|ĥ0|j〉âj +
1

2

∑

ijkl

ĉiĉj〈ij|v̂|kl〉âlâk (5.7)

where

〈i|ĥ0|j〉 = δ(si, sj)
∫
d1 ψ∗i (1)h0(1)ψj(1), 1 ≡ r1

〈ij|v̂|kl〉 = δ(si, sk)δ(sj, sl)
∫
d1d2

ψ∗i (1)ψ∗j (2)ψk(1)ψl(2)

|1− 2|

ĉi = â†i and âi = ĉ†i are creation and annihilation operators respectively
which obey the commutation relations

[ĉi, ĉj]+ = 0, [âi, âj]+ = 0, [ĉi, âj]+ = δij (5.8)

We write the Slater determinants Ψi in the occupation number repre-
sentation and order the single-particle states ψi as follows

|1+, 1−, 0+, 0−, −1+, −1−〉 = ĉ1+ ĉ1− ĉ0+ ĉ0− ĉ−1+ ĉ−1−|0〉

where |0〉 is a state with no electrons in the p shell. We note that for
fermions the ordering of the states is very important. Thus we have

Ψ1 = ĉ1+ ĉ1−|0〉
Ψ2 = ĉ1+ ĉ0+ |0〉

.

.

Ψ15 = ĉ−1+ ĉ−1−|0〉
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The matrix elements of Ĥ1 between Ψ = ĉpĉq|0〉 and Ψ′ = ĉrĉs|0〉 will
be of the following form:

〈Ψ|Ĥ1|Ψ′〉 =
1

2

∑

ijkl

〈ij|v̂|kl〉〈0|âqâpĉiĉj âlâkĉrĉs|0〉

= 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉
The first term is the direct term and the second term is the so called
exchange term.

The matrix elements of Ĥ0 between Ψ = ĉpĉq|0〉 and Ψ′ = ĉrĉs|0〉 are
quite simple:

〈Ψ|Ĥ0|Ψ′〉 =
∑

ij

〈i|ĥ0|j〉〈0|âqâpĉiâj ĉrĉs|0〉

= [〈p|ĥ0|p〉+ 〈q|ĥ0|q〉](δprδqs − δpsδqr)
We have made use of the fact that ψi are eigenfunctions of ĥ0 so that
〈i|ĥ0|j〉 = δij. Ĥ0 is diagonal because the Slater determinants are eigen-

functions of Ĥ0 and they are degenerate. Therefore Ĥ0 only contributes
the same constant term to all the terms.

We must also evaluate the integral 〈pq|v̂|rs〉 before we can calculate the
term energies. To do this, we use the multipole expansion of the Coulomb
potential:

1

|r1 − r2| =
∑

lm

4π

2l + 1

rl<
rl+1
>

Y l∗
m (Ω1)Y l

m(Ω2) (5.9)

where r> and r< are the greater and the smaller of r1 and r2. We recall
that ψi = φl(r)Y

l
m(Ω) where φl(r) is the solution to the radial Schrödinger

equation.

〈ψ1ψ2|v̂|ψ3ψ4〉 =
∫
d3r1 d

3r2

∑

lm

4π

2l + 1

rl<
rl+1
>

φl1(r1)φl2(r2)φl3(r1)φl4(r2)

×
∫
dΩ1Y

l∗
m (Ω1)Y l1∗

m1
(Ω1)Y l3

m3
(Ω1)

×
∫
dΩ2Y

l
m(Ω2)Y l2∗

m2
(Ω2)Y l4

m4
(Ω2)

The integrals over three spherical harmonics are given by Eq. ( 4.68) and
the Clebsch-Gordan coefficients are tabulated extensively in many books
on atomic physics.
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Let us calculate the energy of the term 1D. Since all the eigenfunctions
of 1D are degenerate we can take the state Ψ1:

〈Ψ1|Ĥ1|Ψ1〉 = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉
=

∫
d3r1 d

3r2

∑

lm

4π

2l + 1

rl<
rl+1
>

φ2
1(r1)φ2

1(r2)

×
∫
dΩ1Y

l∗
m (Ω1)Y 1∗

1 (Ω1)Y 1
1 (Ω1)

×
∫
dΩ2Y

l
m(Ω2)Y 1∗

1 (Ω2)Y 1
1 (Ω2)

The second term (exchange term) vanishes because of the orthogonality of
the spin states.

5.3 Ĥ = Ĥ0 + Ĥ1 + Ĥ2

Finally we include the spin-orbit term Ĥ2 which is invariant under simulta-
neous rotations in space and spin coordinates. This implies

[Ĥ, Ĵx] = [Ĥ, Ĵy] = [Ĥ, Ĵz] = [Ĥ, Ĵ2] = 0

where
Ĵx =

∑

i

[L̂x(i) + Ŝx(i)] etc.

Ĥ does not commute with L̂i or Ŝi and the group is now reduced to R3.
This means that the (2L+ 1)(2S + 1) degeneracy of each term will be in
general split and each energy level of Ĥ is now (2J + 1) degenerate with
J = L+ S, L+ S − 1, . . . , |L− S| which follows from the vector-coupling
rule RL⊗RS =

∑L+S
J=|L−S|R

J . The J dependence of the splitting for given
L, S may be evaluated by using the Wigner-Eckart theorem. We assume
that Ĥ2 is small enough so that it causes no mixing between the different
terms. Let ψJM be an eigenstate of Ĵ2 which is also an eigenstate of L̂2

and Ŝ2 since it is formed as a linear combination of the eigenstates of a
given term. We have

∆J = (ψJM ,
∑

i

ξ(ri)li · si ψJM)

= A(ψJM ,L · S ψJM)

=
1

2
A[J(J + 1)− L(L+ 1)− S(S + 1)]
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The second step follows from the fact that L · S = 1/2(Ĵ2 − L̂2 − Ŝ2)
transforms exactly like

∑
i ξ(ri)li ·si and the fact that R3 is simply reducible

i.e. m = 1 in the Wigner-Eckart theorem. The actual magnitude of the
splitting depends on the details of the wavefunctions which are contained
in A.
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Chapter 6

The Group SU2: Isospin

It is found experimentally that the strong nuclear force that binds nucleons
(protons and neutrons) is the same within 1 % between proton-proton,
proton-neutron and neutron-neutron. We may regard a proton and a neu-
tron as two different states of a nucleon. The Hamiltonian describing the
nucleus is invariant under the interchange of proton and neutron states.
This symmetry is called isospin. The group corresponding to isospin is
called SU2, which is homomorphic with the rotation group R3 and the
mathematical description is identical to that of the spin 1/2. This means
that the results we have derived for the group R3 may be readily used here.

6.1 The Group SU2

A 2 × 2 unitary matrix has four independent parameters and it may be
written as

U = exp(iθ)
(
α β
γ δ

)

Since UU † = 1, we have mod(det U) = 1 and we may choose αδ−βγ = 1.
A little algebra shows that δ = α∗ and γ = −β∗ so that

U = exp(iθ)
(

α β
−β∗ α∗

)

105
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The set of matrices U with θ = 0 and determinant = 1 form a subgroup
of U2, called SU2 (special unitary). Thus, SU2 is a group with elements

U =
(

α β
−β∗ α∗

)
(6.1)

and the condition |α|2 + |β|2 = 1. We should note that these matrices are
themselves the elements of the group SU2 and they may be regarded as
representations of rotation operators in a two-dimensional Hilbert space.

Since U are unitary, the corresponding infinitesimal matrices must be
skew Hermitian which can be made Hermitian by including the factor i:

1 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Since the determinant of SU2 is +1, its infinitesimal matrices must have
zero trace and the unit matrix is therefore excluded. The remaining three
matrices are just the Pauli spin matrices which are also the infinitesimal
matrices of the rotation group R3 corresponding to j = 1/2. However,
the relationship between the two group elements of SU2 and R3 is not
necessarily one-to-one (isomorphic).

Physically, we may generate the group SU2 by considering two nucleon
states,

|p〉 = c+
p |0〉, |n〉 = c+

n |0〉
corresponding to proton and neutron. The bilinear products of the annihi-
lation and creation operators that conserve particle number are

c+
p cp, c+

n cn, c+
p cn, c+

n cp

We define a new set of operators

B̂ = c+
p cp + c+

n cn

τ̂+ = c+
p cn

τ̂− = c+
n cp

τ̂z =
1

2
(c+
p cp − c+

n cn) = Q̂− 1

2
B̂

which have the following Lie algebra

[B̂, τ̂+] = [B̂, τ̂−] = [B̂, τ̂z] = 0
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[τ̂z, τ+] = τ+, [τ̂z, τ−] = τ−, [τ̂+, τ̂−] = 2τ̂z

The operator B̂ may be interpreted as the Baryon number operator and
it is an invariant reflecting the conservation of Baryon number. The three
operators τ̂+, τ̂−, and τ̂z form a Lie algebra by themselves and it is identical
to the Lie algebra of the rotation group R3. The two dimensional repre-
sentations of these operators are obtained by evaluating matrix elements
such as (τ+)12 = 〈p|c+

p cn|n〉 = 1 and this gives:

B = 1 τ+ =
1

2
(σx + iσy), τ− =

1

2
(σx − iσy), τz =

1

2
σz

In physical applications, it is usually the Lie algebra which is important
rather than the Lie group. Two different Lie groups may have the same
Lie algebra. As we have seen, the rotation group R3 is not the same as
the group SU2 although they have the same Lie algebra.

6.2 Relationship between SU2 and R3

To relate the elements of R3 to those of SU2 we consider explicitly the
two-dimensional representation of R3 corresponding to j = 1/2. A rotation
about an axis a by an angle φ is represented by

D1/2(a, φ) = exp(φâ ·X) (6.2)

with X = −iσ/2. The anti-commutation relations of the infinitesimal
matrices X are given by

{Xi, Xj} = −1

2
δij (6.3)

which implies

(a ·X)2 =
∑

ij

aiajXiXj = −1

4

∑

i

a2
i E = −1

4
E

sine â is a unit vector. We can now easily work out the representation
matrix D1/2(a, φ)

D1/2(a, φ) = exp(φâ ·X)
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= 1 + φ(â ·X) +
1

2
φ2(â ·X)2 +

1

6
φ3(â ·X)3 +

1

24
φ4(â ·X)4 + . . .

= 1 +
1

2
φ2(â ·X)2 +

1

24
φ4(â ·X)4 + . . .

+(â ·X)[φ+
1

6
φ3(â ·X)2 + . . .]

= 1− 1

2
(φ/2)2 +

1

4
(φ/2)4 + . . .

+2(â ·X)[φ/2− 1

3
(φ/2)3 + . . .]

= cos φ/2 + 2(â ·X)sin φ/2

=
(
cos φ/2− iazsin φ/2 −(ay + iax)sin φ/2

(ay − iax)sin φ/2 cos φ/2 + iazsin φ/2

)

These matrices are the matrices of SU2 in Eq. ( 6.1) if we make the
identification α = cos φ/2− iazsin φ/2 and β = −(ay + iax)sin φ/2 with
0 ≤ φ < 2π and â pointing in all possible directions. The representation
D1/2 for the rotation group is however double-valued because there are two
matrices corresponding to the same rotation. This can be seen by noting
that, to produce all rotations, the angle φ need only cover either 0 to π,
or π to 2π since

R(a, φ) = R(−a,−φ) = R(−a, 2π − φ)

The D1/2 representations corresponding to this same physical rotation are
different because

D1/2(−a, 2π − φ) = −D1/2(a, φ)

The relationship between SU2 and R3 is thus homomorphic because there
are two distinct SU2 matrices corresponding to the same physical rotation.
The representation D1/2 for the rotation group can be made single-valued
by extending the physical rotation angle artificially to 4π (similar to Rie-
mannian sheets in complex plane). A rotation R(a, 2π + φ) is regarded
as a new rotation different from R(a, φ) whereas R(a, 4π + φ) = R(a, φ)
since D1/2(a, 4π + φ) = D1/2(a, φ). A rotation such as R(−a, 2π − φ)
is to be regarded as equivalent to a rotation R(a, 2π + φ) because
R(−a, 2π − φ) = R(a,−(2π − φ)) = R(a, 4π − (2π − φ)) = R(a, 2π + φ).
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6.3 SU2 in Nuclei

As we have discussed in the previous section, the infinitesimal operators
of the group SU2 have the same commutation relations as those of the
rotation group R3. Since the irreducible representations of R3 were deduced
entirely from the commutation relations of the infinitesimal operators, it
follows that we have the same irreducible representations in SU2 which we
may label with DT , T = 0, 1/2, 1, 3/2 . . ., as in R3. T is called the isospin,
similar to L for angular momentum in R3.

We recall that when a Hamiltonian is invariant under R3, the eigen-
functions transforming according to the irreducible representations DL are
degenerate labelled by the z components of angular momentum ML =
L,L − 1, . . . ,−L. Similarly, when a Hamiltonian is invariant under SU2,
the degenerate eigenfunctions tranforming according to the irreducible rep-
resentation DT will have z-components of isospin MT = T, T−1, . . . ,−T .
These multiplets are interpreted as different possible states of nuclei. For
example, the two-dimensional space of proton and neutron, |p〉 and |n〉,
tranforms according to D1/2 and consequently the eigenfunctions of a sin-
gle nucleon will have MT = 1/2,−1/2. Conventionally, MT = 1/2 corre-
sponds to |p〉 and MT = −1/2 to |n〉.

Physically, the operator Q̂ = 1
2
B̂+ T̂z is regarded as a charge operator.

A given nucleus with a fixed neutron number N and proton number Z
corresponds to a state with MT = (Z − N)/2 since 〈Q〉 = Z. This
state may correspond to a state with T = |Z−N |/2 or higher. It is found
experimentally that the ground state of a nucleus has the minimum value of
the total isospin T whereas in an atom, the ground state has the maximum
value of the total spin S (Hund’s rule). This is because the forces between
the nucleons are attractive whereas the forces between the electrons are
repulsive. The physical interpretation of this result is that a nucleus with
a fixed mass number A = N +Z can exist in different nucleon states with
z-components of isospin MT = (Z −N)/2, where Z and N may take any
values constrained by the mass number. For a given nucleus with fixed N
and Z, states with MT = (Z − N)/2 but T > |Z − N |/2 correspond to
excited states.

For the general case of several nucleons, we consider simultaneous SU2

transformation in every nucleon. To find the irreducible representations of
two nucleons, we use the same vector-coupling theory as in the angular
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momentum theory:

DT1 ⊗DT2 =
T1+T2∑

|T1−T2|
⊕DT

which may be extended to an arbitrary number of nucleons.
As a first example, we consider two nucleons. From the vector-coupling

theory, we have states with T = 1 and T = 0. The ground state will
correspond to a singlet with T = 0 and the excited states to a triplet with
T = 1 with MT = 1, 0,−1. To work out these states, let us write down
explicitly the four vectors that form the space of two nucleons:

|1〉 = |p1p2〉 |2〉 = |p1n2〉 |3〉 = |n1p2〉 |4〉 = |n1n2〉

The vectors |1〉 and |4〉 have MT = 1 and −1 respectively and therefore
belong to T = 1 states. To find the other states, we apply the lowering
operator

T̂− = t̂−(1) + t̂−(2)

on the vector |1〉 which conserves the value of T but lowers the value of
MT by one:

T̂−|1〉 = |n1p2〉+ |p1n2〉
= |2〉+ |3〉

The resulting vector has MT = 0 and we conclude that the T = 1 states
must be

|1〉, 1/
√

2(|2〉+ |3〉), |4〉
The remaining vector

1/
√

2(|2〉 − |3〉)
must have T = 0 as may be checked by considering

T̂ 2(|2〉 − |3〉) = (T̂+T̂− + T̂ 2
z − T̂z)(|n1p2〉 − |p1n2〉)

= 0

Another example of isospin labelling is provided by nuclei with A = 13.
The lowest value of T = 1/2 must be given by the nuclei with Z = 6, N =
7, MT = −1/2 (C13) and Z = 7, N = 6, MT = 1/2 (N13). Since
A = 13 is odd, it is not possible to have states with T = 1. The next higher
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states must be formed by the nuclei with Z = 5, N = 8, MT = −3/2
and Z = 8, N = 5, MT = 3/2 corresponding to T = 3/2. The remaining
two states with MT = ±1/2 must correspond to excited states of C13 and
N13.

6.4 Tensor Operators

Tensor operators are irreducible sets of operators associated in particular
with the rotation group R3. The general definition of an irreducible set of
operators {Ôα

i } is

T̂ (G)Ôα
i T̂
−1(G) =

∑

k

Oα
kT

α
ki(G)

In Lie groups, T̂ (a) = 1 +
∑
q aqX̂q for small a so that

T̂ (a)Ôα
i T̂
−1(a) = (1 +

∑
q

aqX̂q)Ô
α
i (1−∑

q

aqX̂q)

= Ôα
i +

∑
q

aq[X̂q, Ô
α
i ]

Since
∑

k

Oα
kT

α
ki(a) =

∑

k

Oα
k

[
δki +

∑
q

aq(X
α
q )ki

]

we have
[X̂q, Ô

α
i ] =

∑

k

Oα
k (Xα

q )ki (6.4)

which is the equivalent definition of irreducible set of operators in Lie
groups.

The relations defining tensor operators associated with the rotation
group are

[Ĵz, Ô
j
m] =

∑

m′
Ôj
m′(ψ

j
m′ , Ĵzψ

j
m) = mÔj

m

[Ĵ±, Ôj
m] =

∑

m′
Ôj
m′(ψ

j
m′ , Ĵ±ψ

j
m) =

√
(j ±m+ 1)(j ∓m)Oj

m±1
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j is called the rank of the tensor and the number of operators in a set is
(2j+1) with m = −j,−j+1, . . . , j. For example, the angular momentum
operators themselves form a tensor operator of rank 1 (vector operator):

Ô1
1 = −Ĵ+

√
2, Ô1

0 = Ĵz, Ô1
−1 = Ĵ−

√
2



Chapter 7

The Point Groups

7.1 Crystal Symmetry

A lattice is defined by three linearly independent vectors a1, a2, and a3

and a crystal is a regular array of lattices such that it is invariant under
translations t = n1a1 + n2a2 + n3a3. Apart from translations, there are
also symmetry operations which are performed with a point fixed (origin)
and which form a point group. The fundamental covering operations of
point groups are

1. Rotations about axes through the origin.

2. Inversion

The complete set of symmetry operations including translations is called
the space group.

7.2 Schoenflies Notation

There are several notations used in describing point groups. We follow the
notation due to Schoenflies.

E = identity
Cn = rotation through 2π/n.
σ = reflection in a plane.

113
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σh = reflection in the plane through the origin and perpendicular to the
axis of highest rotation symmetry.
σv = reflection in the plane through the axis of highest rotation symmetry.
σd = reflection in the plane through the axis of highest rotation symmetry
and bisecting the angle between the two-fold axes perpendicular to the
symmetry axis. This is a special kind of σv.
Sn = improper rotation through 2π/n. An improper rotation is a rotation
followed by a reflection in a plane perpendicular to the axis of rotation.
i = S2 = inversion.

7.3 Commuting Operations

We list pairs of operations which commute. They are useful for working
out group multiplication tables.

1. Two rotations about the same axis.

2. Two reflections in perpendicular planes

3. Two rotations by π about perpendicular axes.

4. A rotation and a reflection in a plane perpendicular to the axis of
rotation

5. The inversion and any rotation or reflection

The following rules are useful in determining the complete symmetry of
the problem.

1. The intersection of two reflection planes is a symmetry axis. The
axis is n−fold if the angle between the planes is π/n. If a reflection
plane contains an n−fold axis, there must be n− 1 other reflection
planes at angles of π/n.

2. If two 2−fold axes make an angle π/n, then there must be a per-
pendicular n−fold axis. A two-fold axis and an n−fold axis implies
the existence of n − 1 additional two-fold axes separated by angles
of π/n.
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3. Any two of the following: an even-fold axis, a reflection plane per-
pendicular to it, and an inversion centre implies the existence of the
other.

7.4 Enumeration of Point Groups

The point groups may be divided into two categories:

1. Simple rotation groups which have one symmetry axis of highest
symmetry.

2. Higher symmetry groups which have no unique axis of highest sym-
metry, but which have more than one n−fold axis where n > 2.

It is convenient to visualise the point group operations by means of
stereographic projections as shown in Figure 7.1. These are formed by
projecting on to the XY plane a general point on a unit sphere which is
subjected to the symmetry operations. The labels +/◦ mean that the
point is above/below the plane respectively. The n-fold rotation axes are
indicated by the symbols at the centre of the circle. Solid radial lines
indicate vertical reflection planes and dashed radial lines indicate rotation
axes. Horizontal reflection planes are indicated by unit circles with solid
lines rather than broken lines.

There are thirty two point groups and we list them in order of increasing
complexity.

Simple rotation groups:

Cn • These are groups of rotations about n−fold axes. They are cyclic
groups of order n. It can be shown that n can only be 1, 2, 3, 4, and
6. Other rotations are not consistent with translational symmetry. The
groups are therefore C1, C2, C3, C4, and C6.

Proof: If t is a translational vector and t′ = Rt, then the translational
vector t′ − t must be perpendicular to the rotation axis. Let s be the
shortest translational vector perpendicular to the axis of rotation. Apply-
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ing Cn on s generates a new vector s’ and we must have

|s′ − s| = 2ssin π/n ≥ s

since s is defined to be the smallest translational vector perpendicular to
the axis of rotation. It follows immediately that n ≤ 6 and geometrical
consideration shows that n = 5 is not possible.

Cnh • These groups have a σh reflection plane in addition to the Cn
axis. When n is even, the group includes the inversion element so that
C2nh = C2n ⊗ I. The groups are C1h, C2h = C2 ⊗ I, C3h, C4h = C4 ⊗ I,
and C6h = C6 ⊗ I.

Cnv • These groups have a σv reflection plane in addition to the Cn axis.
According to rule 1 there must also be n reflection planes separated by an
angle π/n around the Cn axis. C1v is identical to C1h. The groups are
C2v, C3v, C4v, and C6v.

S2n • These groups have an 2n-fold axis for improper rotations and each
has Cn as a subgroup. The groups are S2, S4, and S6 = C3 ⊗ I.

Dn • These groups have n two-fold axes perpendicular to the Cn axis.
The groups are D2, D3, D4, D6.

Dnh • Each of these groups has Dn as a subgroup and in addition it
contains the horizontal reflection plane σh. Since σh commutes with rota-
tions, Dnh = Dn ⊗ I.

Dnd • Each of these groups has Dn as a subgroup and in addition it con-
tains diagonal reflection planes σd bisecting the angles between the twofold
axes perpendicular to the principal rotation axis. The groups are D2d and
D3d.

Higher symmetry groups:

T • This group consists of 12 proper rotations that take a regular tetrahe-
dron into itself. This is shown in Figure 7.2. The elements are E, 3 C2’s
about the X, Y, and Z axes and 8 C3’s about the body diagonals which
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consist of two classes, clockwise and anticlockwise rotations by 2π/3.

Td • This group has T as a subgroup and in addition it contains 6 diagonal
reflection planes σd normal to a cube face and containing a tetrahedral
edge such as ac or ab. The presence of 6 σd’s implies the existence of 6
S4’s about the X, Y and Z axes. The total number of elements is 24.

Th • This group has T as a subgroup and in addition it contains inver-
sion so that Th = T ⊗ I.

O • This is one of the most important point groups, shown in Figures
7.3a and 7.3b. This group consists of 24 proper rotations that take an
octahedron into itself. These are E, 8 C3’s about the body diagonals, 3
C2’s and 6 C4’s about the X, Y, and Z axes, and 6 C2’s about axes through
thr origin parallel to face diagonals. All the C3’s are in the same class but
the two kinds of C2 operations form two distinct classes.

Oh • This group has O as a subgroup and in addition it contains inversion
so that Oh = O ⊗ I.

The following point groups are useful to know but they are not consis-
tent with translational symmetry because they contain fivefold axes.

Y • This group consists of 60 proper rotations that take an icosahedron
or a dodecahedron into itself. This is illustrated in Figures 7.4a and 7.4b.

Yh • This group has Y as a subgroup and in addition it contains inversion
so that Yh = Y ⊗ I.

We list also in Table 7.1 the classification of the 32 point groups according
to the crystal systems to which they belong. The unit cell required for
compatibility with the point-group symmtery is specified by three trans-
lations a, b, and c and three angles α, β, and γ as illustrated in Figure
7.5.
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7.5 Improper Point Groups

The product of two improper elements is a proper element since an improper
element has a determinant −1. It follows also that a product of a proper
and an improper element is an improper element. Let G be an improper
group. We may write

G = P +Q

wher P and Q contain proper and improper elements respectively. Let i
be any improper element. Then from the rearrangement theorem we have

G = iP + iQ

and therefore iP = Q and iQ = P so that

G = P (1 + i)

If i commutes with all elements in the group, then

G = P ⊗ I

where I = (1, i). For example, i can be the inversion or horizontal reflec-
tion. If the inversion is not contained in the group, it is isomorphic with the
proper group G′ = P + iQ. This isomorphism can be seen by noting that
iQ cannot overlap with P since i is not contained in G. Thus we associate
the element iQk of G′ with the element Qk of G while P is common to
both groups.

7.6 Double-Group Representations

We have seen that the half-integer representations of the rotation group R3

are double-valued. Each rotation is represented by two distinct matrices.
The half-integer representations arise for example when the basis functions
are the spin functions χσ(ms) which give the representation D1/2.

Since point groups are subgroups of the rotations group, we also expect
to have double-valued representations when the basis functions transform
according to the half-integer representations, which are often the case in
physical applications.
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Consider a point group g consisiting of proper rotations and the corre-
sponding group G of matrices taken from the representation D1/2, say. G
contains twice as many elements as g does and the group G is called the
double group of g. The two groups G and g are homomorphic. To work
out the character table of the double group, we can proceed as usual but
the following rules simplify the procedure:

1. Let T (R) and T (R̄) be two matrices of G representing the same
rotation R. T (R̄) = ĒT (R) where Ē is minus a unit matrix repre-
senting a rotation by 2π and Ē2 = E represents a rotation by 4π.
Evidently, Ē commutes with all elements of the double group. The
characters of T (R) and T (R̄) must therefore have opposite sign:

χ(R̄) = −χ(R)

except when R is a rotation by π, in which case χ(R̄) = χ(R) = 0.

2. Neglecting for the moment the special case of rotation by π, it follows
that if a set of rotations R form a class of g, then the matrices T (R)
and T (R̄) form two classes of G, such that if T (R) belongs to one
than T (R̄) belongs to the other.

3. If R is rotation by π, then T (R) and T (R̄) may or may not belong
to the same class. They belong to the same class if and only if the
axis of rotation is bilateral, i.e. there is an element that reverses
the direction of the axis. This is because for bilateral axis, R(±θ)
belong to the same class so that in the double group R(π) and
R(−π) = R(3π), or T (R) and T (R̄), belong to the same class.

As an example, we consider the double group of D3. The classes of
D3 are Ce, Cc, and Cd. The classes of the double group can be worked
out by using the rules discussed above. ē is in a class by itself because it
commutes with all elements. There is no bilateral axis so that the character
table is given by
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Ce C̄e 2Cc 2C̄c 3Cd 3C̄d
T 1 1 1 1 1 1 1
T 2 1 1 1 1 −1 −1
T 3 2 2 −1 −1 0 0
T 4 1 −1 1 −1 i −i
T 5 1 −1 1 −1 −i i
T 6 2 −2 −1 1 0 0

The first three are the single-valued representations of D3 and the last three
are the new representations arising from the double group. The characters
χ(C̄d) can be obtained by observing that d2

1 = ē so that χ2(C̄d) = −1 and
therefore χ(C̄d) = ±i. The rest of the table can be filled in by using the
orthogonality between the characters.

Ē commutes with all elements and Ē2 = E so that (E, Ē) form a
subgroup. The double group, however, is not a direct product of this
subgroup and the original group because from the point of view of the
double group, the original group g is no longer a group.

As a simple example of physical applications of the double groups we
consider an atom with three s-electrons. The product of three spin func-
tions tranform according to the product representation D1/2 ⊗ D1/2 ⊗
D1/2 = D3/2 ⊕ 2D1/2. Let us suppose that we break the rotational sym-
metry by putting the atom in a potential with D3 symmetry. The product
functions transform according to the double group of D3 and not accord-
ing to the group D3. The representations D3/2 and D1/2 may be reduced
by using the usual formula χ =

∑
γmγχ

γ where γ labels the irreducible
representations of the double group.

7.7 Space Group

The space group, which is the full symmetry of a crystal, contains
translational-symmetry operators, rotational-symmetry operators from the
point group, and the combinations of the two. The elements of the space
group are conventionally represented by {R|t} meaning

{R|t}r = Rr + t (7.1)
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The multiplication rule for the elements of the space group is

{R|t}{R′|t′}r = {R|t}(R′r + t′)

= R(R′r + t′) + t

= {RR′|Rt′ + t}r (7.2)

If {R′|t′} = {R|t}−1 then {RR′|Rt′ + t} = {E|0} so that

R′ = R−1, t′ = −R−1t (7.3)

Thus the inverse element is

{R|t}−1 = {R−1| −R−1t} (7.4)

We have already shown in example 1 (3.14) that the eigenfunctions
of a Hamiltonian with a lattice translational symmetry must obey Bloch
theorem:

ψk(r + t) = eik·tψk(r) (7.5)

Functions having this property are called Bloch functions. This means that
we can write

ψk(r) = uk(r)eik·r (7.6)

where uk is periodic, i.e.

uk(r + t) = uk(r)

We consider here only simple space groups (symmorphic). By this we
mean that all the point group elements are members of the space group or
in other words, the point group is a subgroup of the space group. This is
not true in general.

The form of the Bloch functions explicitly takes into account the lattice
translational symmetry. Now we consider the effects of the point group
operations on these functions.

T̂ (R)ψk(r) = T̂ (R)uk(r)eik·r

= uk(R−1r)eik·R
−1r

= uk(R−1r)eiRk·r (7.7)
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The function uk(R−1r) is also periodic because

uk(R−1(r + t)) = uk(R−1r + t′) = uk(R−1r)

where t′ = R−1t is just another translational vector.
If we apply all the point-group operations on a wave vector k we obtain

what is called the star of k. If k lies on a symmetry point, some of the
operations will take k into itself. These operations that take k into itself
clearly form a subgroup because R1R2k = R3k = k where R1R2 = R3.
This subgroup is called the group of the wave vector. Under the operations
of this group, we have

T̂ (R)ψk(r) = uk(R−1r)eik·r (7.8)

Thus we see that {uk(R−1r) transform among themselves under the group
of k according to an irreducible representation of the group which is called
the small representation.

The eigenfunctions of the Hamiltonian of a crystal are then specified
by two quantities: the k vector (Bloch theorem) and the irreducible repre-
sentation of the group of k.

Formally, we have (in atomic units h̄ = m = e = 1)

[
−1

2
∇2 + V (r)

]
Ψk = EkΨk (7.9)

Using the Bloch form, we get

−1

2

[
∇2 + 2ik · ∇ − k2

]
uk = Ekuk (7.10)

which may be rewritten

[
−1

2
∇2 + V (r) + k · p

]
uk = E ′kuk (7.11)

where E ′ = E − k2/2. This equation shows the significance of the group
of k. We can think of the last term as a perturbation which breaks the
symmetry of the lattice potential V (r).

Consider first the case of k = 0. Then uk will transform according to
an irreducible representation of the full point group. The degeneracy at this
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point is given by the dimension of the irreducible representation as usual.
Let us now consider the case k 6= 0 with the corresponding k vector group
which is a subgroup of the full point group. In this case, the degenerate
states at k = 0 still form an invariant subspace for the subgroup but they
are in general reducible. We expect that the degeneracy will be split. In
this way we can figure out the degeneracies at any k point. As a simple
example, consider a two dimensional crystal with a square primitive lattice.
The reciprocal space is also a square. Let us assume that the point group is
D4. If we take a point along the x-axis, then the k vector group is (e, ax)
(using the same notation as in the exercise). This is an Abelian group
and the irreducible representations are one dimensional. Thus the states at
this point cannot be degenerate. If we consider the point k = 0, we might
have states which are doubly degenerate because there is a two dimensional
irreducible representation of D4. Along the x-axis, these degenerate states
will in general be split.
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Chapter 8

The Group SU3

8.1 Infinitesimal Operators and Lie Alge-

bra

The group SU3 is an extension of the group SU2. We derive the Lie
algebra from a physical point of view by considering three states which
may be associated with the proton, neutron and lambda particle states:

|p〉 = c+
p |0〉, |n〉 = c+

n |0〉, |Λ〉 = c+
Λ |0〉

The bilinear products of annihilation and creation operators that conserve
particle number are:

c+
p cp, c+

n cn, c+
ΛcΛ,

c+
p cn, c+

n cΛ, c+
Λcp,

c+
p cΛ, c+

n cp, c+
Λcn

These operators form a Lie algebra. We define a new set of infinitesimal
operators as follows:

B̂ = c+
p cp + c+

n cn + c+
ΛcΛ,

T̂z =
1

2
(c+
p cp − c+

n cn),

Ŷ =
1

3
(c+
p cp + c+

n cn − 2c+
ΛcΛ),

125
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T̂+ = c+
p cn, Û+ = c+

n cΛ, V̂+ = c+
Λcp,

T̂− = c+
n cp, Û− = c+

Λcn, V̂− = c+
p cΛ

We could have chosen

Ûz =
1

2
(c+
n cn − c+

ΛcΛ) =
3

4
Ŷ − 1

2
T̂z (8.1)

or

V̂z =
1

2
(c+

ΛcΛ − c+
p cp) = −3

4
Ŷ − 1

2
T̂z (8.2)

instead of T̂z. The operator B̂ commutes with all other operators and
it may be interpreted as the (baryon) number operator. The rest of the
operators form a Lie algebra by themselves and there are at most two
operators that mutually commute, T̂z and Ŷ , so that the corresponding
Lie group is of rank 2. The other operators T̂±, Û±, and V̂± are the ladder
operators, as the notation already suggests. Thus the desired Lie algebra
is

[
T̂z, Ŷ

]
= 0 (8.3)

[
T̂z, Ĵ±

]
= ±1

2
(3δJT − 1)Ĵ± (8.4)

[
Ŷ , Ĵ±

]
= ±(δJU − δJV )Ĵ± (8.5)

where J = T, U, V . The Lie algebras for U and V can be obtained from
Eqs. ( 8.1), ( 8.2), ( 8.3), ( 8.4) and ( 8.5). In additions, we have
commutation relations among the ladder operators which are useful for
generating the multiplets:

[
Ĵ±, Ĵ ′∓

]
= 2δJJ ′ Ĵz (8.6)

[
T̂±, Û±

]
= ±V̂∓ and cyclic permutations (8.7)

We observe also that

[Ĵz, Ĵ±] = ±Ĵ±, [Ĵ+, Ĵ−] = 2Ĵz (8.8)

which is the Lie algebra of SU2.
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The representation of the infinitesimal operators in the three dimen-
sional space of |p〉, |n〉, and |Λ〉 is given by

Tz =




1
2

0 0
0 −1

2
0

0 0 0


 Y =




1
3

0 0
0 1

3
0

0 0 −2
3




T+ =




0 1 0
0 0 0
0 0 0


 T− =




0 0 0
1 0 0
0 0 0




U+ =




0 0 0
0 0 1
0 0 0


 U− =




0 0 0
0 0 0
0 1 0




V+ =




0 0 0
0 0 0
1 0 0


 V− =




0 0 1
0 0 0
0 0 0




These are in fact the generators of the group SU3.

8.2 Subgroups

Knowledge of the subgroups is useful for working out the multiplet struc-
ture. Eq. ( 8.8) shows that there are three SU2 subgroups. Ŷ is a generator
of an Abelian group as indicated by the diagonal form of Y , just like T̂z
is a generator of an Abelian group R2. The generators (Ŷ , T̂z, T̂±) form a
direct product group SU2 ⊗ U1 since Ŷ commutes with T̂z and T̂±. The
Abelian group U1 can be shown to be isomorphic with the group R2. There
are other subgroups but they are not important for the purpose of working
out the multiplet structure.

8.3 Multiplet Structure

There are two mutually commuting operators, T̂z and Ŷ , so that a multiplet
may be labelled by two numbers related to the eigenvalues of two Casimir
operators. Each state in a multiplet may be labelled by the eigenvalues
of T̂z and Ŷ . However, due to the presence of SU2 subgroups, the states
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may be degenerate and additional labels are required to distinguish these
degenerate states. Thus the states in a given multiplet can be written as

ψ(MT , Y, α)

where MT and Y are the eigenvalues of T̂z and Ŷ respectively and α is
a set of additional labels required to distinguish states with the same MT

and Y . Since Ŷ corresponds to an Abelian group, its representation is one
dimensional and uniquely labelled by Y . The label MT on the other hand
may arise from several different values of T . To label each state uniquely,
we may then choose α = T .

From Eq. ( 8.8), the operators (T̂z, T̂+, T̂−) are the infinitesimal op-
erators of the group SU2 and therefore MT takes the values MT =
0,±1/2,±1, . . .. Similarly for (Ûz, Û+, Û−) and (V̂z, V̂+, V̂−). It fol-
lows from Eq. ( 8.1) or ( 8.2) that the eigenvalues of Ŷ are Y =
0,±1/3,±2/3,±1, . . .. Each state in a given multiplet may then be repre-
sented by a point in (MT , Y )-plane as illustrated in Fig. (8.1), keeping in
mind that each point may represent more than one state. Each state is not
only an eigenstate of T̂z and Ŷ but it is also an eigenstate of Ûz and V̂z as
follows from Eqs. ( 8.1) and ( 8.2) but T̂z, Ûz, and V̂z are interrelated so
that one of them determines the other two.

The ladder operators may be conveniently represented by arrows as
shown in Fig. (8.2). For example, Eqs. ( 8.4) and ( 8.5) tell us that

V̂− ψ(MT , Y, T ) =
∑

T ′
c(T ′) ψ(MT +

1

2
, Y + 1, T ′)

To generate a multiplet, we use the same procedure as in the case of
the rotation group. We start from a state ψ with the highest value of Y
and for this Y the highest value of MT . Or alternatively, we could start
from the highest value of MT and for this MT the highest value of Y . The
first alternative implies:

T̂+ψ = Û+ψ = V̂−ψ = 0

Although Û− increases MT , Û−ψ is not necessarily zero because Û− lowers
the value of Y . The above equations imply that ψ is an eigenfunction of
T̂ 2, Û2, and V̂ 2 which may be verified by operating T̂ 2 = T̂−T̂+ + T̂ 2

z + T̂z
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on ψ, and similarly for Û2 and V̂ 2. In other words it has definite T , U ,
and V . Conventionally, ψ is labelled by two numbers λ = 2T and µ = 2U ,
which implies from Eqs. ( 8.1) and ( 8.2) that λ+ µ = 2V . Or

T =
1

2
λ, U =

1

2
µ, V =

1

2
(λ+ µ) (8.9)

The two numbers λ and µ may also be used to label the multiplet: Dλµ.
The state ψ has the following values of MT and Y :

MT =
1

2
λ, Y =

1

3
(λ+ 2µ)

and let us denote the state by the point A = [1
2
λ, 1

3
(λ+ 2µ)] as shown in

the Fig. (8.3). The steps to generate the multiplet is as follows:

1. We apply T̂− repeatedly on ψ(A) until we reach point F at which
T̂−ψ(F ) = 0. The coordinate of point F is F = [−1

2
λ, 1

3
(λ+ 2µ)]

2. We apply Û− repeatedly on ψ(A) until we reach point B at which
Û−ψ(B) = 0. To figure out the coordinate of point B, we observe
that Û− increases MT by 1/2 and decreases Y by 1 and Û− has been
applied µ times from A to B. Thus B = [1

2
(λ+µ), 1

3
(λ−µ)]. There

cannot be states to the right of AB because from Eq. ( 8.6) we have
T̂+Û

n
−ψ = V̂−Ûn

−ψ = 0 Thus the states along AB still have definite
but different values of T and V and the same value of U .

3. The states along BC can be obtained by applying V̂+ repeatedly on
ψ(B) or we can argue from symmetry that the states must be sym-
metrical about the diagonal bisecting AB. The rest of the hexagon
can be obtained by symmetry about the diagonal bisecting BC. We
have shown that the states in a given multiplet must lie on or inside
a hexagon. In general, it can also be a triangle which is the case
when λ = 0 or µ = 0. States on the outermost hexagon are unique
and they have definite T, U, and V .

4. We can now generate states inside the hexagon and there may be
more than one independent state at each point. Consider the state
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labelled by point G. There are three basic ways of reaching point G
from A which generate the states:

φ1 = T̂−Û−ψ φ2 = Û−T̂−ψ φ3 = V̂+ψ,

The states φ1 and φ2 are linearly independent since T̂− and Û− do
not commute but φ3 is not independent of the other two because

[T̂−, Û−]ψ = −V̂+ψ → φ1 − φ2 = −φ3

The state φ1 has a definite T = 1
2
(λ + 1) and it is possible to form

a linear combination of φ2 and φ3 so that it has a definite T :

T̂+(φ2 + cφ3) = T̂+Û−T̂−ψ + cT̂+V̂+ψ

= Û−T̂+T̂−ψ + c(V̂+T̂+ − Û−)ψ

= Û−(T̂−T̂+ + 2T̂z)ψ − cÛ−ψ
= (λ− c)Û−ψ

using the fact that T̂+ψ = 0. By choosing c = λ the linear combi-
nation φ̃2 = φ2 + λφ3 has a definite T = 1

2
(λ − 1) since T̂+φ̃2 = 0

and T̂zφ̃2 = 1
2
(λ− 1)φ̃2. It is of course possible to choose the states

to have definite U or V . Applying T̂− on ψ(G) generate two sets of
states parallel to AF . Continuing along the same fashion, it is not
difficult to show that the next line parallel to AF consists of three
sets of states with T = 1

2
(λ − 2), 1

2
λ, 1

2
(λ + 2). For example, the

state Û2
−ψ has T = 1

2
(λ+ 2) while the state Û−φ̃2 has T = 1

2
λ since

T̂+Û−φ̃2 = Û−T̂+φ̃2 = 0. The third state may be formed by a similar
linear combination as the one described above.

The multiplet structure consists of hexagons of decreasing size with
the degeneracy increased by one as we move inside. Eventually we
may arrive at a triangle instead of a hexagon at which stage the
degeneracy remains constant as we move further. The reason is that
with a triangle we cannot generate an new state such as φ̃2. This
implies that when λ = 0 or µ = 0 each point corresponds to one state
because we start with a triangle and no extra states are generated
as we move inside. This is illustrated by the representation D30 in
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Fig. (8.4) where the point O can be reached from A by V̂+T̂−ψ(A)
or T̂−V̂+ψ(A) but [V̂+, T̂−] = 0 so that the two paths are equivalent.

The multiplet structure also allows us to work out the dimension
of the irreducible representation. Thus the outermost hexagon
contributes 3(λ + µ) states and the next one inside contributes
2× 3(λ+ µ− 2) states and so on taking care of the special case of
a triangle. The general formula is given by

d(λ, µ) =
1

2
(λ+ 1)(µ+ 1)(λ+ µ+ 2) (8.10)

which is symmteric with respect to interchange of λ and µ. Given
a representation Dλµ it is straightforward to map the states in the
(MT , Y )−plane. Starting from the point A = [1

2
λ, 1

3
(λ + 2µ)], we

form the line AF by moving λ steps along T̂− and µ steps along Û−.
The rest of the hexagon and the inner hexagons can be formed from
the rules discussed above.

8.4 Example

As an example, let us construct explicitly the multiplet D21 as shown in
Fig. (8.5). We start with the state

ψ(A) = ψ(1,
4

3
, 1)

which has definite values of T = 1, U = 1
2
, and V = 3

2
. Applying T̂− twice

generates

ψ(0,
4

3
, 1), ψ(−1,

4

3
, 1)

Applying Û− on ψ(A) gives

ψ(B) = ψ(
3

2
,
1

3
,
3

2
)

The T = 3
2

multiplet is generated by repeated applications of T̂− on ψ(B).
The T = 1

2
multiplet is generated from the linear combination

ψ(
1

2
,
1

3
,
1

2
) = c(Û−T̂− + 2V̂+)ψ(A)
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The normalisation constant is obtained by requiring

|c|2
(
(Û−T̂− + 2V̂+)ψ(A), (Û−T̂− + 2V̂+)ψ(A)

)
= 1

We have

(Û−T̂−ψ(A), Û−T̂−ψ(A)) = (ψ(A), T̂+Û+Û−T̂−ψ(A))

= (ψ(A), T̂+(Û−Û+ + 2Ûz)T̂−ψ(A))

= 2(ψ(A), T̂+(T̂−Ûz +
1

2
T̂−ψ(A))

= 2(ψ(A), T̂+T̂−ψ(A))

= 4

(Û−T̂−ψ(A), V̂+ψ(A)) = (ψ(A), T̂+Û+V̂+ψ(A))

= (ψ(A), T̂+(V̂+Û+ + T̂−ψ(A))

= 2

(V̂+ψ(A), V̂+ψ(A)) = 3

Thus the normalisation constant is given by c = 1/
√

24. The states at C
are given by

ψ(0,−2

3
, 1) = c1T̂−V̂+ψ(B), ψ(0,−2

3
, 0) = c2Û−ψ(

1

2
,
1

3
,
1

2
)

The normalisation constants can be calculated in the same way as above.

8.5 Product Representations

In physical applications such as analysing the possible final states in a colli-
sion between two particles, we have to decompose product representations:

Dλ1µ1 ⊗Dλ2µ2 =
∑

λµ

⊕ mλµD
λµ (8.11)

The general formula for the coefficients mλµ is complicated but it possible
to obtain them directly by the method of reduction. We illustrate this
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method by considering the product D11 ⊗D11. First we list all possible T
and Y multiplets contained in D11 and label them by (T, Y ):

D11 = (
1

2
, 1)⊕ (1, 0)⊕ (0, 0)⊕ (

1

2
,−1)

We form products of (T, Y )

(T1, Y1)⊗ (T2, Y2) =
T1+T2∑

T=|T1−T2|
⊕ (T, Y1 + Y2)

To determine T we have used the usual vector coupling theorem and to
determine Y we note that it represents an Abelian group so that the repre-
sentation is of the form exp(icY ) and therefore the product of two represen-
tations Y1 and Y2 is exp[ic(Y1 + Y2)]. Forming all products and substract-
ing all possible representations contained in the product representation we
have:

Y = 2 1 0 −1 −2
D11 ⊗D11 T = 1, 0 2(3

2
), 4(1

2
) 2, 5(1), 4(0) 2(3

2
), 4(1

2
) 1, 0

D22 T = 1 3
2
, 1

2
2, 1, 0 3

2
, 1

2
1

T = 0 3
2
, 3(1

2
) 4(1), 3(0) 3

2
, 3(1

2
) 0

D03 T = 0 1
2

1 3
2

T = 3
2
, 2(1

2
) 3(1), 3(0) 3(1

2
) 0

D30 T = 3
2

1 1
2

0
T = 2(1

2
) 2(1), 3(0) 2(1

2
)

2D11 T = 2(1
2
) 2(1), 2(0) 2(1

2
)

T = 0
D00 T = 0

The first row is a list of all possible Y that arise from the product rep-
resentation. The second row is a list of all possible T and the number
preceeding each bracket is the number of times the T multiplets arise for
a given Y . The product D11 ⊗ D11 must contain a representation with
T = 1, Y = 2 which is the representation D22. We substract the T values
of D22 listed in the third row from the product representation which yields
the fourth row. Following the same argument, there must be a represen-
tation with T = 0, Y = 2 which is the representation D03. We substract
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the T values of D03 from the remaining T ’s and continue along the same
fashion. Thus we conclude finally

D11 ⊗D11 = D22 ⊕D03 ⊕D30 ⊕ 2D11 ⊕D00

8.6 SU3 Multiplets and Hadrons

Hadrons are strongly interacting particles with decay time < 10−8 sec, ex-
cept proton and neutron. By strong we mean that the energy involved in a
reaction is of the order of MeV or greater. Apart from, mass, spin, charge,
and parity, hadrons may be assigned the following intrinsic quantities:

1. Isospin T : Among an isospin multiplet, hadrons have (almost) the
same masses. For example, proton and neutrons which correspond to
T = 1/2 or the three π-particles which correspond to T = 1. Strong
interactions are found to be invariant under isospin tranformation,
i.e. states in a given isospin multiplets transform among themselves
under isospin transformation such as transformation among (p, n) or
(π+, π−, π0) (c.f. angular momentum states).

2. Hypercharge Y: The quantity Y in the group SU3 is related to the
charge and the z-component of isospin by

Y = 2(Q−MT )

This relation is a physical interpretation which does not follow from
group theory. It is known experimentally that the hypercharge is
conserved in strong interaction. Hadrons can be divided into baryons
with half-integer spins and mesons with integer spins, the former are
heavier than the latter.

3. Baryon number B: It is conserved in all reactions, including weak
ones. The assignment of baryon number if as follows: B = +1 for
baryons, B = −1 for anti-baryons, and B = 0 for mesons.

With the above assignments of intrinsic quantities, hadrons can be
beautifully classified according to SU3 multiplets. Fig. (8.6) (figure 11.8 of
Elliot and Dawber) shows some of these classifications. The corresponding
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particles are listed in Table (8.1) (from table 11.1 of Elliot and Dawber).
The representation D11 and D30 consist of baryons with spin 1/2 and 3/2
respectively while the other D11 representation corresponds to the mesons.
Particles with short life-time, which arise as resonances in collisions, may
often be regarded as excited states of the more stable ones.

It has been suggested that baryons are composed of three more funda-
mental spin 1/2 particles known as quarks which are labelled by u, d, and
s. These three quarks are supposed to correspond to the representation
D10 so that

u → T =
1

2
, MT = +

1

2
, Y = +

1

3
, Q = +

2

3

d → T =
1

2
, MT = −1

2
, Y = +

1

3
, Q = −1

3

s → T = 0, MT = 0, Y = −2

3
, Q = −1

3

Since the largest spin is S = 3/2, it is then proposed that the baryons can
be constructed from the triple product

D10 ⊗D10 ⊗D10 = D30 ⊕ 2D11 ⊕D00

A more complicated model involving nine quarks has also been proposed
which introduces, apart from spin, additional intrinsic properties known as
colours.

8.7 Casimir Operators

We have not made any explicit use of the Casimir operators in working out
the structure of the multiplets. To construct the second order Casimir op-
erator, it is possible to use the general formula derived before and a similar
formula for higher order Casimir operators can also be derived although
they become more complicated. For the group SU3 there is a simple way
of working out the Casimir operators which is based on the observation
that the infinitesimal operators may be written in terms of the matrices
defined by:

(Aji )kl = δikδjl − 1

3
δijδkl (8.12)
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We have

Tz = (A1
1 − A2

2)/2, Y = −A3
3, T+ = A2

1, T− = A1
2

U+ = A3
2, U− = A2

3, V+ = A1
3, V− = A3

1

The commutation relations for the Aji are

[Aji , A
l
k] = δjkA

l
i − δilAjk

It is then easy to show that the operators

C2 =
∑

ij

AjiA
i
j, C3 =

∑

ijk

AkjA
j
iA

i
k

commute with all of the infinitesimal operators. Instead of C3 it is more
convenient to define

C ′3 = C3 +
3

2
C2

so that

Ĉ2ψ =
[
2

3
(λ2 + µ2 + λµ) + 2(λ+ µ)

]
ψ

Ĉ ′3ψ =
1

9
(λ− µ)(2λ+ µ+ 3)(2µ+ λ+ 3) ψ

which may be easily verified by using the Lie algebra.


