2. Introduction to quantum mechanics

2.1 Linear algebra

Dirac notation

Complex conjugate	z^*
Vector/ket	$ \psi angle$
Dual vector/bra	$\langle arphi $
Inner product/bracket	$\langle arphi \psi angle$
Tensor product	$ arphi angle \otimes \psi angle \equiv arphi angle \psi angle$
Complex conj. matrix	A^*
Transpose of matrix	A^T
Hermitian conj/ adjoint of matrix	$A^{\dagger} = (A^T)^*$
Inner product	$\langle arphi A \psi angle$

Basis, vector representation

For a set of vectors $|v_1
angle,...,|v_n
angle$ spanning \mathbf{C}^n

$$|v\rangle = \sum_{i} a_{i} |v_{i}\rangle \equiv \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$$

The set $|v_1
angle,...,|v_n
angle$ constitutes a *basis* for ${f C}^n$

Linear operators

A linear operator A means

$$A\left(\sum_{i}a_{i}|v_{i}\rangle\right) = \sum_{i}a_{i}A(|v_{i}\rangle)$$

Notation

 $A|v\rangle \equiv A(|v\rangle) \qquad \qquad BA|v\rangle \equiv B(A(|v\rangle))$

Matrix representation

For $|v_1\rangle, ..., |v_n\rangle$ spanning \mathbf{C}^n , $|w_1\rangle, ..., |w_m\rangle$ spanning \mathbf{C}^m , a *matrix representation* of $A : \mathbf{C}^n \to \mathbf{C}^m$ means

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

Numbers A_{ij} form matrix $A \Rightarrow$

Linear operator (basis given) ⇔ matrix representation (to be used interchangeably...)

Pauli matrices

 $\sigma_0 \equiv I \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma_1 \equiv \sigma_x \equiv X \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_2 \equiv \sigma_y \equiv Y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 \equiv \sigma_z \equiv Z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Inner vector product

A *inner product* on \mathbf{C}^n is

$$((a_1, ..., a_n), (b_1, ..., b_n)) = \sum_{i=1}^n a_i^* b_i$$

We use notation

$$\langle w|v
angle \equiv (|w
angle, |v
angle)$$

Hilbert space = inner product space

The vectors
$$|v
angle, |w
angle$$
 are orthogonal if $\langle w|v
angle = 0$

The norm of a vector is

$$||v\rangle|| = \sqrt{\langle v|v\rangle}$$

An *orthonormal set* of vectors |i
angle obey

$$\langle j|i\rangle = \delta_{ij}$$

Vector representation

With respect to an orthonormal basis |i
angle for ${f C}^n$

$$|v\rangle = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \qquad |w\rangle = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

the inner product is

$$\langle w|v\rangle = \begin{bmatrix} b_1^*, b_2^*, \dots, b_n^* \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

We thus have

$$\langle w | = \sum_{i} b_{i}^{*} \langle i | \equiv [b_{1}^{*}, b_{2}^{*}, .., b_{n}^{*}]$$

(an orthonormal basis will be used unless otherwise stated)

Outer vector product

The outer product

 $|\varphi\rangle\langle\psi|$

is a linear operator

$$|\varphi\rangle\langle\psi|\left(|\psi'\rangle\right) = |\varphi\rangle\langle\psi|\psi'\rangle = \langle\psi|\psi'\rangle|\varphi\rangle$$

Cauchy-Schwartz inequality

For two vectors |v
angle, |w
angle

$$\langle v|v\rangle\langle w|w\rangle \ge |\langle v|w\rangle|^2$$

Completeness relation

For vectors $|i\rangle$ forming an orthonormal basis $\langle j|i\rangle = \delta_{ij}$ for \mathbf{C}^n

$$\sum_{i=1}^{n} |i\rangle\langle i| = I$$

Eigenvectors and eigenvalues

The eigenvector $|v\rangle$ to $\,A\,$ obeys $A|v\rangle=v|v\rangle$

with v the *eigenvalue*.

The *diagonal representation* of A is (for diagonalizable A)

$$A = \sum_{i} \lambda_{i} |i\rangle \langle i|$$

in terms of eigenvalues λ_i and orthonormal eigenvectors $|i\rangle$ of |A|

Hermitian operators

The *Hermitian conjugate*/adjoint of A is A^{\dagger} We have $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ and $|v\rangle^{\dagger} = \langle v|$, $(|v\rangle\langle w|)^{\dagger} = |w\rangle\langle v|$

An Hermitian operator obeys

$$A^{\dagger} = A$$

Projection operator

The operator
$$P = \sum_{i=1}^{m} |i\rangle \langle i|$$

is a *projection* operator $P : \mathbf{C}^n \to \mathbf{C}^m, m < n$

Properties

 $P^2 = P \qquad P^{\dagger} = P$

Orthogonal complement Q = I - P

Normal operator

An operator A is *normal* if

 $A^{\dagger}A = AA^{\dagger}$

An operator is normal if and only if it is diagonalizable. An Hermitian operator is normal.

Unitary matrix

A matrix/operator U is *unitary* if

 $U^{\dagger}U = UU^{\dagger} = I$

Positive operator

An operator A is *positive* if $\langle v|A|v\rangle \geq 0$ and real for any vector $|v\rangle$.

Any positive operator is Hermitian \Rightarrow Any positive operator has real, positive eigenvalues and a *spectral decomposition*

$$A = \sum_{i} \lambda_{i} |i\rangle \langle i|$$

in terms of eigenvalues λ_i and orthonormal eigenvectors |i
angle of |A|

Tensor product

A *tensor product* between vectors $|v\rangle, |w\rangle$ in $\mathbf{C}^n, \mathbf{C}^m$

 $|v\rangle \otimes |w\rangle \equiv |v\rangle |w\rangle \equiv |vw\rangle$

is a vector in $\mathbf{C}^{n \times m}$

Example:

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \otimes \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 w_1 \\ v_1 w_2 \\ v_2 w_1 \\ v_2 w_2 \end{bmatrix}$$

A tensor product between operators/matrices A,B is denoted

 $A\otimes B$

Operation

$$A \otimes B(|v\rangle \otimes |w\rangle) = A|v\rangle \otimes B|w\rangle$$

Properties

$$(A\otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$$

Matrix representation

Example:

For matrices

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

we have the tensor product

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{11}B_{21} & A_{11}B_{22} & A_{12}B_{21} & A_{12}B_{22} \\ A_{21}B_{11} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

Operator functions

For a normal operator A , written in the spectral decomposition

$$A = \sum_{a} a |a\rangle \langle a|$$

we define the/operator matrix function

$$f(A) = \sum_{a} f(a) |a\rangle \langle a|$$

<u>Trace</u>

The *trace* of a matrix A is

$$\operatorname{tr}(A) = \sum_{i} A_{ii}$$

Cyclic property

$$tr(ABC) = tr(CAB) = tr(BCA)$$

Outer product formulation

 $\operatorname{tr}(A|\psi\rangle\langle\psi|) = \langle\psi|A|\psi\rangle$

Commutators

The *commutator* between two operators/matrices A, B is

[A,B] = AB - BA

The *anti-commutator* between two operators/matrices A, B is

 $\{A,B\} = AB + BA$

Matrix decompositions

Polar decomposition: For a linear operator A there exists a unitary operator U and positive operators J, K so that

A = UJ = KU

Singular value decomposition: For a square matrix A there exists unitary matrices U, V and a diagonal matrix D with non-negative elements (singular values), such that

A = UDV

2.2 Postulates of quantum mechanics

State space

Postulate 1:

Associated to any isolated physical system is a Hilbert space, known as the *state space* of the system. The system is completely described by its *state vector*, a unit vector in the state space

Definitions/names

A two-level, *qubit* state $|\psi
angle$ can generally be written as

 $|\psi\rangle = a|0\rangle + b|1\rangle$

This is a *superposition* of the two basis states $|0\rangle$ and $|1\rangle$, with *amplitudes* a and b

The normalization condition gives

$$\langle \psi | \psi \rangle = |a|^2 + |b|^2 = 1$$

Evolution

Postulate 2:

The evolution of a quantum system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ of the system at time t is related to the state $|\psi'\rangle$ of the system at time t' by a unitary operator U as

 $|\psi'\rangle = U|\psi\rangle$

Postulate 2':

The evolution of state $|\psi\rangle$ of a quantum system is described by the *Schrödinger equation*

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle$$

where \hbar is Plancks constant and H the Hamiltonian, a Hermitian operator.

Closed system

For a closed system the Hamiltonian $\,H\,$ is independent on time and the system state $\,|\psi(t)\rangle\,$ is

$$|\psi(t_2)\rangle = \exp\left[\frac{-iH(t_2-t_1)}{\hbar}\right]|\psi(t_1)\rangle = U(t_2,t_1)|\psi(t_1)\rangle$$

where we define the unitary time evolution operator

$$U(t_2, t_1) = \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right]$$

The Hamiltonian has the spectral decomposition

$$H = \sum_{E} E |E\rangle \langle E|$$

where $|E\rangle$ are the *energy eigenstates* and E the *energy*.

Effective Hamiltonian for open systems

For many open systems we have an effective time dependent Hamiltonian acting on the system \Rightarrow The solution to the Schrödinger equation is non-trivial

Measurement

Projection measurement postulate

A projective measurement is described by an *observable*, M, an Hermitian operator on the state space of the system. The observable has the spectral decomposition

$$M = \sum_{m} m P_m = \sum_{m} m |m\rangle \langle m|$$

The possible outcomes correspond to the eigenvalues m of M.

Upon measuring the state $|\psi\rangle$ the probability of getting the result $\,m$ is given by

$$p(m) = \langle \psi | P_m | \psi \rangle$$

Given that m has occured, the state immediately after the measurement is (wavefunction collapse)

$$rac{P_m |\psi
angle}{\sqrt{p(m)}}$$

Measurement problem?

General measurement

Postulate 3:

Quantum measurements are described by a collection $\{M_m\}$ of *measurement operators*, acting on the state space of the system. The index m refers to the possible measurement outcomes. Upon measuring the state $|\psi\rangle$, the probability of getting the result m is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

and the state after the measurement is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}}$$

The measurement operators satisfy the completeness relation

$$\sum_{m} M_m^{\dagger} M_m = I$$

Probabilities sum to one

$$\sum_{m} p(m) = \sum_{m} \langle \psi | M_m^{\dagger} M_m | \psi \rangle = 1$$

Projective vs general measurement

For a projective measurement

$$M_m = P_m \qquad \qquad M_m M_{m'} = \delta_{mm'} M_m$$

The *average* measured value (over an ensemble of states $|\psi\rangle$)

$$\sum_{m} mp(m) = \sum_{m} \langle \psi | P_m | \psi \rangle = \langle \psi | \left(\sum_{m} m P_m \right) | \psi \rangle = \langle \psi | M | \psi \rangle \equiv \langle M \rangle$$

The magnitude of the quantum fluctuations are

$$\langle (\Delta M)^2 \rangle = \langle (M - \langle M \rangle)^2 \rangle = \langle M^2 \rangle - \langle M \rangle^2$$

Derivation: Heisenbergs uncertainty principle is

$$\Delta(C)\Delta(D) \equiv \sqrt{\langle (\Delta C)^2 \rangle \langle (\Delta D)^2 \rangle} \geq \frac{1}{2} |\langle [C, D] \rangle|$$

Composite systems

Postulate 4:

The state space of a composite system is the tensor product of the state spaces of the component systems.

If we have systems numbered 1through n, and system i is prepared in state $|\psi_i\rangle$, the state of the total system is $|\psi_1\rangle \otimes |\psi_2\rangle \otimes ... \otimes |\psi_n\rangle$

General measurement and projection II

Derivation: Given projection measurements and an *ancilla* system, derive the general measurement principles.

POVM measurement

Common formulation of general measurement postulate.

A measurement is described by measurement operators M_m . The probability to get the outcome m is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

We define the positive operator

$$E_m = M_m^{\dagger} M_m$$

which has the properties

$$\sum_{m} E_{m} = I \qquad p(m) = \langle \psi | E_{m} | \psi \rangle$$

We call E_m the *POVM-elements* and the set $\{E_m\}$ a *POVM.*

Distinghuishing quantum states

Given a single copy of one of two non-orthogonal states $|\psi_1\rangle$, $|\psi_2\rangle$, it is not possible to determine which state by any measurement.

Derivation: The example with $\{E_1, E_2, E_3\}$

Entanglement of two qubits

A composite state $|\psi\rangle$ of two qubits that can not be written as a tensor product of the states $|a\rangle$, $|b\rangle$ of the two qubits is *entangled*, that is

 $|\psi\rangle \neq |a\rangle |b\rangle$

Derivation: Show that the Bell state

$$|\psi
angle = rac{1}{\sqrt{2}} \left[|00
angle + |11
angle
ight]$$

is entangled

Entanglement is the "energy" for quantum information processing

2.3 Superdense coding

Suppose that Alice wants to send two bits of classical information to Bob by only sending one qubit. Can she do it?

Derivation: Superdense coding