2. Introduction to quantum mechanics

2.1 Linear algebra

Dirac notation

Complex conjugate	z^{*}
Vector/ket	$\|\psi\rangle$
Dual vector/bra	$\langle\varphi\|$
Inner product/bracket	$\langle\varphi \mid \psi\rangle$
Tensor product	$\|\varphi\rangle \otimes\|\psi\rangle \equiv\|\varphi\rangle\|\psi\rangle$
Complex conj. matrix	A^{*}
Transpose of matrix	A^{T}
Hermitian conj/ adjoint of matrix	$A^{\dagger}=\left(A^{T}\right)^{*}$
Inner product	$\langle\varphi\| A\|\psi\rangle$

Basis, vector representation

For a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ spanning C^{n}

$$
|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle \equiv\left[\begin{array}{c}
a_{1} \\
a_{2} \\
. . \\
a_{n}
\end{array}\right]
$$

The set $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ constitutes a basis for \mathbf{C}^{n}

Linear operators

A linear operator A means

$$
A\left(\sum_{i} a_{i}\left|v_{i}\right\rangle\right)=\sum_{i} a_{i} A\left(\left|v_{i}\right\rangle\right)
$$

Notation

$$
A|v\rangle \equiv A(|v\rangle) \quad B A|v\rangle \equiv B(A(|v\rangle))
$$

Matrix representation

For $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ spanning $\mathbf{C}^{n},\left|w_{1}\right\rangle, \ldots,\left|w_{m}\right\rangle$ spanning \mathbf{C}^{m}, a matrix representation of $A: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ means

$$
A\left|v_{j}\right\rangle=\sum_{i} A_{i j}\left|w_{i}\right\rangle
$$

Numbers $A_{i j}$ form matrix $A \Rightarrow$

$$
\begin{aligned}
& \text { Linear operator (basis given) } \Leftrightarrow \text { matrix representation } \\
& \text { (to be used interchangeably...) }
\end{aligned}
$$

Pauli matrices

$$
\begin{array}{cc}
\sigma_{0} \equiv I \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & \sigma_{1} \equiv \sigma_{x} \equiv X \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
\sigma_{2} \equiv \sigma_{y} \equiv Y \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) & \sigma_{3} \equiv \sigma_{z} \equiv Z \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

Inner vector product

A inner product on C^{n} is

$$
\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)=\sum_{i=1}^{n} a_{i}^{*} b_{i}
$$

We use notation

$$
\langle w \mid v\rangle \equiv(|w\rangle,|v\rangle)
$$

Hilbert space = inner product space
The vectors $|v\rangle,|w\rangle$ are orthogonal if

$$
\langle w \mid v\rangle=0
$$

The norm of a vector is

$$
\||v\rangle \|=\sqrt{\langle v \mid v\rangle}
$$

An orthonormal set of vectors $|i\rangle$ obey

$$
\langle j \mid i\rangle=\delta_{i j}
$$

Vector representation

With respect to an orthonormal basis $|i\rangle$ for \mathbf{C}^{n}

$$
|v\rangle=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
. . \\
a_{n}
\end{array}\right] \quad|w\rangle=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
. . \\
b_{n}
\end{array}\right]
$$

the inner product is

$$
\langle w \mid v\rangle=\left[b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
. . \\
a_{n}
\end{array}\right]
$$

We thus have

$$
\langle w|=\sum_{i} b_{i}^{*}\langle i| \equiv\left[b_{1}^{*}, b_{2}^{*}, . ., b_{n}^{*}\right]
$$

(an orthonormal basis will be used unless otherwise stated)

Outer vector product

The outer product

$$
|\varphi\rangle\langle\psi|
$$

is a linear operator

$$
|\varphi\rangle\langle\psi|\left(\left|\psi^{\prime}\right\rangle\right)=|\varphi\rangle\left\langle\psi \mid \psi^{\prime}\right\rangle=\left\langle\psi \mid \psi^{\prime}\right\rangle|\varphi\rangle
$$

Cauchy-Schwartz inequality
For two vectors $|v\rangle,|w\rangle$

$$
\langle v \mid v\rangle\langle w \mid w\rangle \geq|\langle v \mid w\rangle|^{2}
$$

Completeness relation
For vectors $|i\rangle$ forming an orthonormal basis $\langle j \mid i\rangle=\delta_{i j}$ for C^{n}

$$
\sum_{i=1}^{n}|i\rangle\langle i|=I
$$

Eigenvectors and eigenvalues

The eigenvector $|v\rangle$ to A obeys

$$
A|v\rangle=v|v\rangle
$$

with v the eigenvalue.

The diagonal representation of A is (for diagonalizable A)

$$
A=\sum_{i} \lambda_{i}|i\rangle\langle i|
$$

in terms of eigenvalues λ_{i} and orthonormal eigenvectors $|i\rangle$ of A

Hermitian operators

The Hermitian conjugate/adjoint of A is A^{\dagger}
We have $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ and $|v\rangle^{\dagger}=\langle v|,(|v\rangle\langle w|)^{\dagger}=|w\rangle\langle v|$
An Hermitian operator obeys

$$
A^{\dagger}=A
$$

Projection operator

The operator

$$
P=\sum_{i=1}^{m}|i\rangle\langle i|
$$

is a projection operator $P: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}, m<n$
Properties

$$
P^{2}=P \quad P^{\dagger}=P
$$

Orthogonal complement $Q=I-P$

Normal operator
An operator A is normal if

$$
A^{\dagger} A=A A^{\dagger}
$$

An operator is normal if and only if it is diagonalizable. An Hermitian operator is normal.

Unitary matrix

A matrix/operator U is unitary if

$$
U^{\dagger} U=U U^{\dagger}=I
$$

Positive operator
An operator A is positive if

$$
\langle v| A|v\rangle \geq 0
$$

and real for any vector $|v\rangle$.

Any positive operator is Hermitian \Rightarrow Any positive operator has real, positive eigenvalues and a spectral decomposition

$$
A=\sum_{i} \lambda_{i}|i\rangle\langle i|
$$

in terms of eigenvalues λ_{i} and orthonormal eigenvectors $|i\rangle$ of A

Tensor product
A tensor product between vectors $|v\rangle,|w\rangle$ in $\mathbf{C}^{n}, \mathbf{C}^{m}$

$$
|v\rangle \otimes|w\rangle \equiv|v\rangle|w\rangle \equiv|v w\rangle
$$

is a vector in $\mathrm{C}^{n \times m}$

Example:

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} w_{1} \\
v_{1} w_{2} \\
v_{2} w_{1} \\
v_{2} w_{2}
\end{array}\right]
$$

A tensor product between operators/matrices A, B is denoted

$$
A \otimes B
$$

Operation

$$
A \otimes B(|v\rangle \otimes|w\rangle)=A|v\rangle \otimes B|w\rangle
$$

Properties

$$
(A \otimes B)^{\dagger}=A^{\dagger} \otimes B^{\dagger}
$$

Matrix representation

Example:

For matrices

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

we have the tensor product

$$
\begin{aligned}
A \otimes B & =\left[\begin{array}{ll}
A_{11} B & A_{12} B \\
A_{21} B & A_{22} B
\end{array}\right] \\
& =\left[\begin{array}{llll}
A_{11} B_{11} & A_{11} B_{12} & A_{12} B_{11} & A_{12} B_{12} \\
A_{11} B_{21} & A_{11} B_{22} & A_{12} B_{21} & A_{12} B_{22} \\
A_{21} B_{11} & A_{21} B_{12} & A_{22} B_{11} & A_{22} B_{12} \\
A_{21} B_{21} & A_{21} B_{22} & A_{22} B_{21} & A_{22} B_{22}
\end{array}\right]
\end{aligned}
$$

Operator functions
For a normal operator A, written in the spectral decomposition

$$
A=\sum_{a} a|a\rangle\langle a|
$$

we define the/operator matrix function

$$
f(A)=\sum_{a} f(a)|a\rangle\langle a|
$$

Trace
The trace of a matrix A is

$$
\operatorname{tr}(A)=\sum_{i} A_{i i}
$$

Cyclic property

$$
\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)
$$

Outer product formulation

$$
\operatorname{tr}(A|\psi\rangle\langle\psi|)=\langle\psi| A|\psi\rangle
$$

Commutators
The commutator between two operators/matrices A, B is

$$
[A, B]=A B-B A
$$

The anti-commutator between two operators/matrices A, B is

$$
\{A, B\}=A B+B A
$$

Matrix decompositions
Polar decomposition: For a linear operator A there exists a unitary operator U and positive operators J, K so that

$$
A=U J=K U
$$

Singular value decomposition: For a square matrix A there exists unitary matrices U, V and a diagonal matrix D with non-negative elements (singular values), such that

$$
A=U D V
$$

2.2 Postulates of quantum mechanics

State space

$$
\mathrm{C}^{n} \times \mathrm{C}^{n}
$$

Postulate 1:

Associated to any isolated physical system is a Hilbert space, known as the state space of the system. The system is completely described by its state vector, a unit vector in the state space

Definitions/names

A two-level, qubit state $|\psi\rangle$ can generally be written as

$$
|\psi\rangle=a|0\rangle+b|1\rangle
$$

This is a superposition of the two basis states $|0\rangle$ and $|1\rangle$, with amplitudes a and b

The normalization condition gives

$$
\langle\psi \mid \psi\rangle=|a|^{2}+|b|^{2}=1
$$

Evolution

Postulate 2:

The evolution of a quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t^{\prime} by a unitary operator U as

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

Postulate 2':

The evolution of state $|\psi\rangle$ of a quantum system is described by the Schrödinger equation

$$
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle
$$

where \hbar is Plancks constant and H the Hamiltonian, a Hermitian operator.

Closed system
For a closed system the Hamiltonian H is independent on time and the system state $|\psi(t)\rangle$ is

$$
\left|\psi\left(t_{2}\right)\right\rangle=\exp \left[\frac{-i H\left(t_{2}-t_{1}\right)}{\hbar}\right]\left|\psi\left(t_{1}\right)\right\rangle=U\left(t_{2}, t_{1}\right)\left|\psi\left(t_{1}\right)\right\rangle
$$

where we define the unitary time evolution operator

$$
U\left(t_{2}, t_{1}\right)=\exp \left[\frac{-i H\left(t_{2}-t_{1}\right)}{\hbar}\right]
$$

The Hamiltonian has the spectral decomposition

$$
H=\sum_{E} E|E\rangle\langle E|
$$

where $|E\rangle$ are the energy eigenstates and E the energy.

Effective Hamiltonian for open systems
For many open systems we have an effective time dependent Hamiltonian acting on the system \Rightarrow The solution to the Schrödinger equation is non-trivial

Measurement

Projection measurement postulate

A projective measurement is described by an observable, M, an Hermitian operator on the state space of the system. The observable has the spectral decomposition

$$
M=\sum_{m} m P_{m}=\sum_{m} m|m\rangle\langle m|
$$

The possible outcomes correspond to the eigenvalues m of M.
Upon measuring the state $|\psi\rangle$, the probability of getting the result m is given by

$$
p(m)=\langle\psi| P_{m}|\psi\rangle
$$

Given that m has occured, the state immediatelly after the measurement is (wavefunction collapse)

$$
\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}
$$

General measurement

Postulate 3:

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators, acting on the state space of the system. The index m refers to the possible measurement outcomes. Upon measuring the state $|\psi\rangle$, the probability of getting the result m is given by

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

and the state after the measurement is

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

The measurement operators satisfy the completeness relation

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I
$$

Probabilities sum to one

$$
\sum_{m} p(m)=\sum_{m}\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle=1
$$

Projective vs general measurement

For a projective measurement

$$
M_{m}=P_{m} \quad M_{m} M_{m^{\prime}}=\delta_{m m^{\prime}} M_{m}
$$

The average measured value (over an ensemble of states $|\psi\rangle$)

$$
\sum_{m} m p(m)=\sum_{m}\langle\psi| P_{m}|\psi\rangle=\langle\psi|\left(\sum_{m} m P_{m}\right)|\psi\rangle=\langle\psi| M|\psi\rangle \equiv\langle M\rangle
$$

The magnitude of the quantum fluctuations are

$$
\left\langle(\Delta M)^{2}\right\rangle=\left\langle(M-\langle M\rangle)^{2}\right\rangle=\left\langle M^{2}\right\rangle-\langle M\rangle^{2}
$$

Derivation: Heisenbergs uncertainty principle is

$$
\Delta(C) \Delta(D) \equiv \sqrt{\left\langle(\Delta C)^{2}\right\rangle\left\langle(\Delta D)^{2}\right\rangle} \geq \frac{1}{2}|\langle[C, D]\rangle|
$$

Composite systems

Postulate 4:

The state space of a composite system is the tensor product of the state spaces of the component systems.

If we have systems numbered 1 through n, and system i is prepared in state $\left|\psi_{i}\right\rangle$, the state of the total system is

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle
$$

General measurement and projection II
Derivation: Given projection measurements and an ancilla system, derive the general measurement principles.

Common formulation of general measurement postulate.
A measurement is described by measurement operators M_{m}.
The probability to get the outcome m is given by

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

We define the positive operator

$$
E_{m}=M_{m}^{\dagger} M_{m}
$$

which has the properties

$$
\sum_{m} E_{m}=I \quad p(m)=\langle\psi| E_{m}|\psi\rangle
$$

We call E_{m} the POVM-elements and the set $\left\{E_{m}\right\}$ a POVM.

Distinghuishing quantum states

Given a single copy of one of two non-orthogonal states $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$, it is not possible to determine which state by any measurement.

Derivation: The example with $\left\{E_{1}, E_{2}, E_{3}\right\}$

Entanglement of two qubits

A composite state $|\psi\rangle$ of two qubits that can not be written as a tensor product of the states $|a\rangle,|b\rangle$ of the two qubits is entangled, that is

$$
|\psi\rangle \neq|a\rangle|b\rangle
$$

Derivation: Show that the Bell state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle]
$$

is entangled

Entanglement is the "energy" for quantum information processing

2.3 Superdense coding

Suppose that Alice wants to send two bits of classical information to Bob by only sending one qubit. Can she do it?

Derivation: Superdense coding

